
1

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Digital Circuits

 Electrical & Computer Engineering
Department (ECED) Course Notes

ECED2200

2

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Table of Contents
Digital Circuits ... 7

Logic Gates ... 8

AND Gate ... 8

OR Gate .. 9

NOT Gate ... 10

NOR Gate ... 11

NAND Gates ... 12

XOR Gate .. 15

X NOR Gate .. 16

Additional Gates... 17

Electric Switches ...17

Diodes .. 17

Transistors ... 19

Logic Classifications ..21

The Breadboard ..23

Number Systems ... 25

Binary Numbers ... 25

Number Conversion ..26

Binary to Decimal Conversion .. 26

Decimal to Binary Conversion .. 27

Binary Arithmetic ..28

Binary Addition .. 28

Binary Subtraction.. 30

Binary Multiplication .. 31

Binary Division ... 33

3

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Bits, Bytes and Words ...35

Other Notations ..35

Octal Number System .. 35

Hexadecimal Numbering System .. 37

Signed Magnitudes ...39

Complements ... 40

Two’s Complement Arithmetic ... 44

Binary Coded Decimal ...47

Boolean Algebra .. 48

Boolean Theorems ... 48

Boolean Postulates in 0 and 1 .. 48

Basic Boolean Identities ... 49

De Morgan’s Theorems .. 51

Logic Circuit Analysis .. 52

Two-Level Combinational Logic ...54

Logic Circuit Synthesis ... 55

Adding ..55

The Half Adder ... 55

The Full Adder .. 58

Subtraction ...63

Direct Approach ... 63

Indirect Approach (Using Adders) .. 64

Arithmetic Logic Unit (ALU) ...64

A Design Procedure ...65

Two-Level Canonical Forms .. 69

Sum of Products ... 69

Product of Sums ... 72

4

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Conversion Between Canonical Forms ... 72

Positive Versus Negative Logic ... 74

Minimization by Mapping ... 76

Karnaugh Maps (K-Maps) ... 76

Mapping in Four Variables ... 83

Five-Variable Maps... 87

Comments on Maps ... 89

Some More Notes: Implicants .. 94

Multilevel Combinational Logic .. 100

Conversion to NAND and NOR Networks ... 102

Computer Aided Design Tools... 108

Time Response in Combination Networks .. 109

Gate Delays .. 109

Timing Waveforms ... 109

Hazards and Glitches ... 111

Hazards in Multilevel Networks ... 115

Programmable and Steering Logic .. 120

PAL’s and PLA’s .. 120

The Difference Between PLA’s and PAL’s ... 121

Design Procedure ... 127

Beyond Simple Logic Gates ... 133

Switching Logic ... 133

Multiplexer/Data Selector... 133

Multiplexer as a Logic Building Block .. 137

Decoders/Demultiplexer/Data Distribution .. 140

Decoder/Demultiplexer as a Logic Building Block 142

Tri-State Gates .. 145

Sequential Logic Design .. 147

5

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Logic Gate Memory Units.. 147

Inverter Chains ... 147

Cross-Coupled NOR Gates .. 148

Timing Waveforms ... 152

The Data Latch ... 153

The D Flip-Flops .. 155

Timing .. 156

The JK-Flip Flop .. 157

The T Flip-Flop .. 161

Conversion of One Flip-Flop Type to Another .. 162

Practical Matters ... 168

Debouncing Switches ... 169

The 555 Timer .. 170

Sequential Logic Applications .. 172

Registers .. 172

Shift Registers .. 172

A Practical Register ... 175

Counters .. 176

Types of Counters ... 176

Divide-by-n Circuits .. 176

Binary Ripple Counter .. 177

Decade Counters .. 180

Synchronous Counters ... 183

Ring Counters ... 184

Counter Design Procedure .. 185

Self-Starting Counters ... 191

6

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Verifying if a Counter is Self-Starting .. 191

Counter Reset .. 193

Implementation with Different Kinds of Flip-Flops .. 194

Comparison & Summary of Different Implementations 204

Memory ... 207

RAM ... 207

ROM ... 211

Finite State Machines.. 216

Finite State Machine Design Procedure .. 216

Moore and Mealy Machines ... 227

The Moor Machine ... 227

The Mealy Machine .. 229

Alternative State Machine Representations ... 236

7

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Digital Circuits
Digital Circuits have inputs and outputs that are represented by discrete values.
The figure below shows a typical output for a digital circuit.

There are two possible output values, namely ±5 volts. Two distinct voltage levels
separated by a forbidden region electronically represent the binary numbers 1
and 0.

8

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

In analog circuits the inputs and outputs have continuous values as show
below:

Analog waveform more realistically represent physical quantities such as sound
and temperature. Digital waveforms only approximate real values if there are
many discrete values. Digital waveforms, however, can best represent degraded
signals.

Logic Gates
A gate is a device that controls the flow of information, usually in the form

of pulses. Each logic operation will be indicated by a symbol whose function is
defined by a truth table that shows all possible inputs and the corresponding
outputs.

AND Gate

Symbol

A ● B is read “A and B”.

9

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Truth Table

An output appears only when there are inputs at A and B. In general,
there may be several input terminals.

Typical Response
A typical response for two inputs varying with time is shown below:

OR Gate

Symbol

10

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

A + B is read “A or B”.

Truth Table

Typical Response
A typical response for two inputs varying with time is shown below:

NOT Gate
Signal inversion corresponds to a logic NOT.

Symbol

11

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

A is read “not A”.

Truth Table

The NOT element is an inverter; the output is the complement of the
signal input.

Typical Response

NOR Gate
An inverted OR gate results in a NOT OR or NOR operation.

Symbol

12

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The small circle at the output of the gate, and the line over A + B
indicate the inversion process. Thus A+B is A+B inverted.

Truth Table

Typical Response

All basic logic operations can be achieved by using only NOR gates.

NAND Gates
An inverted AND gate results in a NOT AND or NAND operation. A NAND gate has
all the advantages of a NOR gate and is very easy to fabricate. In a complex logic
system, it is convenient to use one type of gate, even when simpler types would
be satisfactory, so that gate characteristics are the same for the whole system.

13

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Symbol

The small circle and the line over A ● B indicate inversion.

Truth Table

Typical Response

14

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Three NAND gates can be used to replace an OR gate. The
combination of NAND gates is equivalent to an OR gate in that it
performs the same logic operation (see example below).

Example:
Use NAND gates to form a two-input OR gate.

The desired function is defined by the following truth table:

From the table we see that if each input were inverted (replaced by
its complement) the NAND gate would produce the desired result as
indicated in the table.

To obtain the inversion, tie both terminals of a NAND gate together
as shown below.

In digital notation, the function f is defined by:

15

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

 A•B A+Bf = =

This relation was obtained by comparing the desired and available
truth tables. A “digital algebra” for direct manipulation of such
expressions will be considered later.

XOR Gate
As indicated by the truth tables, the Exclusive-OR operation can be expressed as
(A+B) • (A•B)which reads “(A or B) and not (A and B)”. The alternate form
A•B + A•B is called an inequality comparator since it provides an output of one if A
and B are not equal.

Symbol

Truth Table

One realization of this gate is shown below:

16

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

X NOR Gate
The exclusive-NOR operator can be expressed as (see the truth tables) A•B+A•B .

It is the inverse of the inequality comparator A•B + A•B . This is an “equality
comparator” since the output is 1 if A and B are equal.

Symbol

Truth Table

One realization of this gate is shown below:

17

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Additional Gates
The following truth table shows all possible gates. This is based on writing out all
possible variations of the truth table, with names for some of those gates given:

Electric Switches

Diodes
A diode is a two-terminal electrical device that allows current to flow in one
direction but not the other. A schematic diagram from a diode is shown below.

18

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

If the anode is at a higher voltage than the cathode, the diode is forward biased,
its resistance is very low, and current flows. The diode has voltage drop of about
0.7V across it. If the anode is at a lower voltage than the cathode, the diode is
reverse biased, its resistance is very high, and no current flows.

Simple gates can be constructed by using diodes and a resistor. An AND gate is
shown below:

If the inputs are positive (> +5V) with respect to ground, inputs at A and B turn off
both diodes, no current flows through R and there is a positive output (a 1). In
general, there may be several input terminals. If any of those inputs are zero (0),
current flows through the forward-biased diode, and the output is nearly zero (0).

An OR gate is shown below:

19

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

For no input (zero voltage) no current flows and the output is zero (0). An input of
+5V (1) at either terminal A or B on both (or on any terminal in the general case)
forward biases the corresponding diode, current flows through the resistor, and
the output voltage rises to nearly 5V (1).

The voltage drop across the diodes add up when circuits of this type are cascaded
in series and the voltage levels are degraded. Note that it is not possible to
construct and inverter using only diodes and resistors. Transistors can be used to
circumvent these problems.

Transistors

Bipolar
A bipolar transistor is a three-terminal semiconductor device. Under
control of one of the terminals, called the base, current can below
from the collector terminal to the emitter terminal.

The basic inverter circuit is shown below.

20

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

A high voltage at the base turns on the transistor. The output f is
discharged to ground, getting close to 0V (but never quite reaching
it). When a low voltage is placed on the base, the transistor is turned
off. The output node f voltage approaches the power supply voltage
Vcc through the pull-up/load resistor R1.

Metal Oxide Semiconductor
A Metal Oxide Semiconductor (MOS) transistor is a voltage-
controlled switch. It has three terminals: a source, a drain, and a
gate. There are two different types of MOS transistors, called nmos
and pmos. Their schematic symbols are shown below:

An nmos transistor conducts when a high voltage (1) is placed on its
gate, and is non-conducting when a zero voltage (0) is on the gate.
The pmos transistor is complementary. A pmos transistor conducts
when a logic 0 is placed on the gate, and is non-conducting when a
logic 1 is on the gate.

21

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Diodes, transistors, and resistors can be used to implement a wide range of gates.

Logic Classifications
Electronic logic circuits are classified in terms of the components employed. Basic
operations can be performed by:

1. Diode Logic (DL)
2. Resistor-Transistor Logic (RTL)
3. Diode-Transistor Logic (DTL)
4. Transistor-Transistor Logic (TTL)
5. Metal-Oxide Semiconductor (MOS)
6. Complementary MOS (CMOS)
7. Emitter-Coupled Logic (ECL)

Logic types vary in (a) signal degradation (b) fan-in (c) fan-out and (d) speed.

Signal Degradation:
As mentioned earlier, a disadvantage of diode logic is that the
forward voltage drops is appreciable, and the output signal is
degraded. The use of transistors minimizes degradation.

Fan-In:
The number of inputs that can be accepted is called fin-in. It is low (3
or 4) for DL and high (8 or 10) for TTL.

Fan-Out:
The number of outputs that can be supplied by a logic element is
called the fan-out. Fan-out depends on the output current capacitor
(and the input current requirement) and varies from 4 in DL to 10 or
more in TTL.

Speed:
The speed of a logic operation depends on the time required to
change the voltage levels, which is determined by the effective time
constant of the element. In high speed diodes, the charge storage is
so low that response is limited primarily by wiring and lead

22

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

capacitance. In transistors in the ON stat, base current is high and the
charge stored in the base region is high. This charge must be
removed before the collector bias can reverse. Typically, 5 to 10 nS
are required to process a signal. In ECL, the charge stored is minimal
and ECL gates can operate at rates up to 200 MHz.

Noise Margin:
The difference between the operating input voltage and the
threshold voltage is called the noise margin.

TTL Packaged Logic:
Integrated Circuits containing few than a dozen gates are small-scale
integration (SSI); those with more than a hundred elements are
large-scaled integration (LSI). In between are medium-scale
integration (MSI) circuits. A TTL integrated circuit package typically
contains several simple logic gates. The Texas Instruments (TI) 74-
series components provide the standard number scheme used by the
industry. For example, a package containing four 2-input NAND gates
is a “7400” while a “7404” contains six inverters. A 14-pin package
along with a diagram of its internal logic and pin connectivity is
shown below.

Another interpretation:

23

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The Breadboard

24

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

25

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Number Systems
To design efficient digital circuits, we need a special numbering system and a
special algebra. We will now consider the binary number system and apply logic
to binary relations.

Binary Numbers
A number N can be written as a polynomial of the form:

1 2 1 0 1
1 2 1 0 1

1

... ...n n m
n n m

n
i

i
i m

N b r b r b r b r b r b r

b r

− − − −
− − − −

−

=−

= + + + + + + +

= ∑

Where:

 r = base or radius of the system

 bi = ith bit (digit)

 bn-1 = most significant bit (digit) MSB

 b-m = least significant bit (digit) LSB

n = number of integer bits (digits)

m = number of fraction bits (digits)

and

 0 1 for all i, 1ib r m i n≤ ≤ − − ≤ ≤ −

In the decimal system a quantity is represented by the value and the position of a
digit. For example, the number 503.14 can be written as:

26

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

We see that 10 is the base and each position to the left or right of the decimal
point corresponds to a power of 10.

For data with only two possibilities such as the ON-OFF position of a switch which
can be represented by the number 0 or 1, we use the binary system. In this
system the base is 2. For example the number 10 can be written as:

In electronics 1 and 0 usually correspond to the specified voltage levels e.g.: in
TTL, 0 corresponds to a voltage near zero and 1 to a voltage near +5V.

Number Conversion

Binary to Decimal Conversion
In a binary number, each position to the right or left of the “binary point”
corresponds to a power of 2, and each power of 2 has a decimal equivalent.

To convert a binary number to its decimal equivalent, add the decimal equivalents
of each position occupied by a 1.

Example
Write in decimal the following numbers:

27

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Decimal to Binary Conversion
A decimal number can be converted to its binary equivalent by expressing the
decimal number as a sum of powers of 2. A more convenient method is the
double-dabble method of handling integers and decimals separately.

To convert a decimal integer to its binary equivalent, progressively divide the
decimal number by 2, noting the remainders; the remainder taken in reverse
order forms the binary equivalent.

To convert a decimal fraction to its binary equivalent, progressively multiply the
fraction by 2, removing and noting the carries; the carries taken in forward order
from the binary equivalent.

Example
Convert decimal 28.375 and 0.625 to their binary equivalent.

A) Using the shorthand notation for the double-dabble method:

The binary equivalent is 11100.

Then convert the fraction:

28

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The binary equivalent is .011

Hence, 28.375 is equivalent to binary 11100.011:

B)

The binary equivalent is 0.101.

Binary Arithmetic

Binary Addition
Add column by column carrying where necessary into higher position columns.

Examples
A) Perform 1110 + 1011

B) Perform 0110.110 + 0110.011

Results:

A)

29

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Check your results:

The binary equivalent is 11001 which checks OK.

B)

The binary equivalent is:

30

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

1101.001 is the binary equivalent of 13.125, which checks OK.

Binary Subtraction
Subtract column by column borrowing where necessary from higher position
columns.

 Example:
Perform the following binary subtractions:

A) 1101.011 – 101.101

B) 1010 – 1101

Answers:

A)

Check:

31

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Hence 10.110 is the binary equivalent to 2.75, so this answer checks
out OK.

B)

Check:

Hence, -11 is the binary equivalent of -3, so the answer checks out.

Binary Multiplication
Obtain partial products using the binary multiplication table:

32

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

 0 x 0 = 0

 0 x 1 = 0

 1 x 0 = 0

 1 x 1 = 1

and then add the partial products. The binary point is handled in the same way a
decimal point would be when multiplying.

Example
Perform the following binary multiplication: 1110.1 x 1.01. Check by
converting from binary to decimal and multiplying.

Check:

33

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

This shows that 10010.001 is the binary equivalent of 18.125, so the
multiplication checks OK.

Binary Division
Perform repeated subtractions as in long division of decimals.

Example
Perform the following binary division: 10011.01 ÷ 11.1 . Check by
converting from binary to decimal and then dividing.

34

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Hence, 101.1 is the binary equivalent of 5.5, which checks out OK.

35

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Bits, Bytes and Words
A single binary digit is called a “bit”. All information in a digital system is
represented by a bit.

 4 bit sequence is a nibble

 8 bit sequence is a byte

 16 bit sequence is a word

The number of bits in the data sequence processed by a computer is an important
characteristic. An 8 bit microprocessor can receive, store, and transmit data or
instructions in the form of bytes. Eight bits can be arranged in 28 = 256 different
combinations, thus a byte can have 256 values.

Other Notations
The number of years in a century can be written as 100D or 10010 in the decimal
system. In binary notation this would be written 01100100B or 011001002 ; the
suffix B or subscript 2 is used wherever necessary to avoid confusion.

Octal Number System
The octal number system is a base 8 system and so has eight distinct digits {0, 1,
2, 3, 4, 5, 6, 7 }. It is expressed as a string of any combination of the eight digits.
To convert from octal to decimal, we follow the same procedure for converting
from binary to decimal; that is, express the octal number in its polynomial form
and evaluate this polynomial by using decimal-system addition.

Example
Convert the number 367.2408 to its decimal equivalent.

36

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

To convert from decimal to octal we use the same procedure as converting from
decimal to binary, but instead of diving by 2 for the integer part, divide by 8 to
obtain the octal equivalent. Also, instead of multiplying by 2 for the fractional
part, multiply by 8 to obtain the fractional octal equivalent of the decimal system.
However, it is more common to convert from binary to octal and vice-versa.

The conversion from binary to octal is accomplished by grouping the binary
numbers into groups of 3 bits each, starting from the binary point and proceeding
to the right and to the left. Each group is then replaced by its octal equivalent.

Example
Convert 011001002 into its octal equivalent.

Grouping the bits into groups of 3 bits from the binary point we get:

001 100 100

Note that a leading zero was added to complete the first group. Each
group is now replaced by its octal equivalent to get:

 001 100 100

 1 4 4

Thus,

 011001002 = 144 O = 1448

The three-bit octal numbers are easier to work with than their 8-bit binary
equivalents.

37

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

To convert from octal to binary replace each octal digital by its 3-bit binary
equivalent.

Hexadecimal Numbering System
The hexadecimal numbering system is a base-16 system and has sixteen distinct
digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} where A is the equivalent of
decimal 10, B to 11, …, and F to 15. A hexadecimal number is expressed as a string
of any combination of the 16 symbols. To convert from hexadecimal to decimal
and vice versa we follow the same procedure for conversion between decimal
and octal, except we now use 16 instead of 8.

Example
Convert the number 2AB.F816 to its decimal equivalent.

To convert from binary to hexadecimal group the binary numbers into 4 bits each;
starting from the binary point and proceeding to the right and to the left and then
replace each group by its hexadecimal equivalent.

Example
Convert the following into their hexadecimal equivalents.

A) 11000011.012

B) 011001002

Results:

38

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

A) Group the bits into groups of 4 bits from the binary point and
replace each group by its hexadecimal equivalent:

Thus 11000011.012 = C3.416.

B)

Thus 011001002 = 64H = 6416.

To convert from hexadecimal to binary replace each hexadecimal digit by its 4-bit
binary equivalent. A table of the four number systems is given below:

39

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Signed Magnitudes
In binary notation, an n-bit data word can represent the first 2n non-negative
integers. To allow for both positive and negative numbers, the most significant bit
(MSB) can be designated as the sign bit (0 for positive numbers, 1 for negative
numbers). The lower order bits then represent the magnitude of the number in
binary notation.

The figure below shoes a “number where” representation of a 4-bit number
system. The figure shows the binary numbers and their decimal integer
equivalents, assuming that the numbers are interpreted as sign and magnitude.

40

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The largest positive number that can be represented in three data bits is +7 = 23 –
1. Similar the smallest negative number is -7.

This method has the following disadvantages:

• The number zero has two different representations
• Two different arithmetic circuits are required to process positive and

negative numbers, see the following straight-binary example giving
incorrect answers:

Complements
A better notation for computers is based on the fact that adding the complement
of a number is equivalent to subtracting the number. Hence instead of performing
A-B using a subtractor, we can perform A + (-B) to obtain the same result using an
adder.

For each base r system, there are two types of complements, namely, the radix
complement, also known as the r’s complement, and the diminished radix
complement, also known as the (r-1)’s complement.

41

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Radix Complement
The radix complement, denoted by [N]r , for a n-digital and r-base
number (N)r is defined as follows:

Example:

A) Obtain the 2-digit 10’s complement of 15 and 24.

B) Represent -15 and -24 in 8-bit signed 2’s complement notation.

Answers:

A) 1510 = 102 – 15 = 100 – 15 = 85

2410 = 102 – 24 = 100 – 24 = 76

B) In binary:

42

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

and:

The 2’s complement of a binary number can be obtained directly from the given
number of copying each bit of the number, starting at the lest significant bit, and
proceeding towards the most significant bit until the first 1 has been copied. After
the first 1 has been complied, replaced each of the remaining 0’s and 1’s by 1’s
and 0’s respectively.

43

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Example

The 4-bit 2’s complement number representation is shown below. Note there is
only one representation for zero.

A) Represent -15 and -24 in 8-bit signed 2’s complement notation.

Convert 1111 to 8-bit number:

00001111

Starting from left-hand side, invert each bit until the last ‘1’ is
encountered:

11110001

 Therefore -15 is 11110001 in signed 2’s complement.

44

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Again convert to 8-bit number:

00011000

Starting from left-hand side, invert each bit until the last ‘1’ is
encountered:

11101000

 Therefore -24 is 11101000 in signed 2’s complement.

The 4-bit 2’s complement number representation is shown below. Note there is
only one representation for zero.

Two’s Complement Arithmetic

Addition
Two n-bit signed binary numbers in 2’s complement format are
added by performing a binary addition of the two numbers, including
the sign bits. If a carryover bit results from the leftmost bit, it is
discarded. The leftmost bit of the result will give the sign of the sum.

If the sign bit is a 1 we must take the 2’s complement of the result to
get the real magnitude of the final answer.

45

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Subtraction
In 2’s complement format subtraction of two signed numbers is
performed by adding the 2’s complement of the subtractand to the
numerand. If a carryover results from the leftmost bit, it is discarded.
Also the leftmost bit gives the sign of the difference.

Note that the 10’s complement can be obtained by forming the 9’s
complement and adding 1. The 2’s complement can be obtained by
forming the 1’s complement ad adding 1. The 1’s complement is
formed by changing 1’s to 0’s and 0’s to 1’s. The 1’s complements
representation is shown below. Note the two representations of
zero:

Example
Perform (A) 24-15 and (B) 15-24 directly and by complement
notation.

Answers:

A) Direct

10’s Complement

46

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

2’s Complement

B) Direct

10’s Complement

2’s complement

47

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Note that for the 10’s complement the carryover is discarded and
if the result is negative the complement must be taken to get the
final result.

Binary Coded Decimal
For convenience, computer input/output devices may accept/provide decimals on
the human side and binaries on the computer side. In a binary-coded decimal
number each of the decimal digital is coded in binary, using 4 bits. For example in
the 8421 code 610 = 01102, 310 = 0112, and 363 = 0011 0110 0011 BCD.

When a computer is to handle letters as well as numbers, the alphanumeric code
is used. In the American Standard Code for Information Interchange (ASCII) seven
bits are used to represent all the characters and punctuation marks on a
teletypewriter keyboard plus some control signals. Note that 27 = 128
combinations of 7 bits. An eighth bit, the MSB, is a parity bit used in error
correction. In the even parity connection, the MSB is set so that the number of 1’s
in each ASCII character is even, the present of an odd number of 1’s indicates an
error.

48

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Boolean Algebra
Boolean algebra is useful in manipulating binary variables (0,1) in OR, AND, or
NOT relations and in the analysis and design of all types of digital systems.

Boolean Theorems
The basic postulates are given in the tables below. In general, the inputs and
outputs are variables (either 1 or 0).

Boolean Postulates in 0 and 1

49

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Basic Boolean Identities
No. Identity Comments
1 A+0=A Operations with 0

and 1
2 A+1=1 Operations with 0

and 1
3 A+A=A Idempotent
4 A+A=1 Complements
5 A 0=0• Operations with 0

and 1
6 A 1=A• Operations with 0

and 1
7 A A=A• Idempotent
8 A A=A• Complements
9 A=A
10 A+B=B+A Commutative
11 A B=B A• • Commutative
12 A (B+C)=(A+B)+C=A+B+C+ Associative
13 A (B C)=(A B) C=A B C• • • • • • Associative
14 A (B+C)=(A B)+(A C)• • • Distributive
15 A+(B C)=(A+B) (A+C)• • Distributive
16 A+(A B)=A• Absorption
17 A (A B)=A• + Absorption
18 (A B)+(A C)+(B C)=(A B)+(A C)• • • • • Consensus
19 A+B+C+...=A B C...• • De Morgan
20 A B C ...=A B C...• • • + + De Morgan
21 (A+B) B=A B• • Simplification
22 (A B) B=A B• + + Simplification

The validity of the 22 rules can be verified by substituting all possible values for
the Boolean variables and evaluating the left and right-hand sides of each
identity. This is known as a proof by perfect induction.

50

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Example:
Use proof by induction to verify the consensus identity:

Note that when B●C=1, this means B=C=1. One of the remaining
terms will always be 1 in that case, which is why B●C is redundant.

The first nine identities are the fundamental relations of Boolean algebra.
Identities 10-14 are similar to the laws of ordinary algebra. Identities 10 and 11
are the commutative rules, 12 and 13 are the associative rules, and 14 and 16 are
the distributive rules. Identities 16-18 do not apply to ordinary algebra but are
very useful in Boolean Algebra. Identities 16 and 17 are the absorption identities;
identity 18 is the consensus identity; identity 19 and 20 are De Morgan’s rules.
Formally identities 21 and 22 are simplification rules.

The basic identities can be used to simplify Boolean functions.

Example
Derive the absorption rule:

51

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Using other basic theorems.

De Morgan’s Theorems
De Morgan’s theorems are easily interpreted in terms of logic circuits. The first
says that a NOR gate is equivalent to an AND gate with NOT circuits in the inputs.
The second says that a NAND gate is equivalent to an OR gate with NOT circuits in
the inputs. As started by Shannon, De Morgan’s theorem says:

To obtain the inverse of any Boolean function, invert all variables and
replace all OR’s by AND’s and all AND’s by OR’s.

Example
Use De Morgan’s theorems to design a combination of NAND gates
equivalent to a two-input OR gate.

The desired function is:

52

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Using De Morgan’s theorem (Identity 19) we get:

Suggesting a NAND gate with NOT inputs because by
theorem 7, a NAND gate with the inputs tied together performs the
NOT operation. The logic circuit is shown below:

Logic Circuit Analysis
The Boolean identities permit us to manipulate logic statements or functions
directly, without setting up truth tables. Also, the use of Boolean algebra can lead
to simpler logic statements that are easier to implement. De Morgans theorems
are useful in finding NAND operations that are equivalent to other operations.

The analysis of a logic circuit consists in writing a logic statement expression the
overall operation of the circuit. This can be done by starting at the input and
tracking through the circuit noting the function realized at each output. The
resulting expressions can be simplified or put into an alternate form by using
Boolean Algebra. A truth table can be constructed.

Note the symbol A●B can be simplified to AB or A(B).

Example
Analyze the given logic circuit:

53

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Construct the truth table to demonstrate that this circuit could be
replaced by a single NAND gate.

The suboutputs are as noted on the diagram. The overall function
can be simplified as follows:

The truth table is given below:

54

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Two-Level Combinational Logic
A two-level implementation means that there are only two gates between input
and output. A two-level implementation of f A B C D= • + • is shown below:

Each appearance of a variable or its complement is an expression is called a
literal. Combinational networks are those where the outputs depend only on the
current input. They are circuits without a memory.

55

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Logic Circuit Synthesis
The logic designer starts with a logic statement or truth table, converts the logic
function into a convenient form and then realizes the desired functions by means
of a standard or special logic Elements.

Adding

The Half Adder
Consider the process of addition. In adding two binary digits, the possible sums
are shown below. Note that when A=1 and B=1, the sum in the first column is 0
and there is a carry of 1 to the next higher column.

As indicated in the truth table, the half-adder must perform as follows: “s is 1 if A
is 0 AND B is 1, OR if A is 1 AND B is 0; c is 1 if A AND B are 1”. In logic
nomenclature, this becomes:

Which can be written as:

56

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Note that a full-adder can accept the carry from the adjacent column.

To synthesize a half-adder circuit, start with the output and work backwards. The
above equation indicates that the sum s is the output of an OR gate; the inputs
are obtained from AND gates; inversion of A and B is necessary. The above
expression also indicates that the carry c is the output of an AND gate. The logic
circuit is shown below.

Different Boolean expressional are possible for a given logic statement and some
will lead to better circuit realizations than others. Consider the last expression:

57

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

And referring to the truth table we see that another interpretation is:

“S is 1 if (A OR B) is 1 AND (A AND B) is NOT 1”. The binary addition is:

The synthesis of the circuit, working backwards from the output, is shown below:

The circuit is better than the previous one in that fewer logic elements are used
and the longest path from input to output passes through fewer levels.

58

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

In terms of the Exclusive-OR gate, the half-adder takes the simple form shown
below:

The half adder can be treated as a discreet logic element and represented as
shown below:

The Full Adder
To add two binary digits (bits) the half-adder performs the most elementary part.
For a complete addition we need a fill-adder capable of handling the carry input
as well. The addition process is illustrated below where ci is the carry from the
proceeding column:

59

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Each carry of 1 must be added to the two digits in the next column, so the logic
circuit must be able to combine three inputs. The truth table for the full-adder is
shown below.

Note that both S and Co have four cases with 1’s in the output columns. In logic
notation we have:

60

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The expression for Co can be simplified as follows:

61

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Although this leads to a simpler expression, applying the rules of Boolean algebra
in this situation does not guarantee the simplest expression. A more systematic
approach will be discussed later.

Using the expression for S and Co the full adder can be implemented as shown
below:

The full adder can also be implanted with two half-adders and one OR gate, as
shown below:

For this case the S output from the second half-adder is the Exclusive-OR of Ci and
the output of the first half-adder, giving:

62

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

as before. The carry out is the (Exclusive-OR of A and B AND Ci) OR’ed with A AND
B, or:

as before.

The full adder can be treated as a discreet logic element and represent as shown
below:

63

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

To obtain the binary addition of two n-bit binary numbers, we cascade n full-
adder circuits together, with the carry in of a full-adder being connected to the
carry out of the previous full adder. The interconnection of four full-adders to
provide the addition of two 4-bit binary numbers is shown below:

Note that the initial adder need only be a half-adder since the initial Ci is 0.

MSI (Medium Scale Integration) packages are available that contain 4 and 8-bit
binary adders.

Subtraction

Direct Approach
Subtraction can be implemented with logic circuits in a direct manner as was
done for adders. In this method the subtractend is subtracted from the numerend
to form the difference. If the numerend is smaller than the subtractend, a 1 is
borrowed from the next significant position. This borrow must be conveyed to the
next stage. As in the case of adders, there are half- and full-subtractors.

64

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Indirect Approach (Using Adders)
As discussed earlier, subtraction may be accomplished by taking the complement
of the subtractend and adding it to the numerend. Subtraction then becomes
addition requiring full-adders for machine implementation. The addition and
subtraction operation can be combined into one circuit with the common binary
adder. This is done by including an Exclusive-OR gate with each full adder as
shown below. The mode input (M) controls the operation. When M=0, the circuits
is an adder, and when M=1, the circuit becomes a subtractor. Each Exclusive-OR
gate has input M and one of the inputs of B (Bi).

When M=0, we have Bi XOR 0 = Bi. The full-adders receive the value Bi, the input
carry is 0, and the circuit performs A+B. When M-1, we have Bi XOR 1 = NOT Bi,
and the input carry is 1. The Bi inputs are all complemented and a 1 is added
through the input carry. The circuit performs (A + NOT(B) + 1) which is A plus the
2’s complements of B. Note that NOT(B) is actually the 1’s complement, but also
called the “diminished 2’s complement”.

Arithmetic Logic Unit (ALU)
A arithmetic logic unit (ALU) is a combinational network of logic gates arranged to
perform addition, complementing, incrementing, and the associated register for
temporary storage of data or results. The ALU is governed by a control unit, which
sets the various logic gates, feeds the numeric data, and provides the clock pulse

65

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

that regulates the speed of operation. An ALU and its control unit for an
elementary example are shown below.

In this case the stored number A and B are operated according to the instruction
in the form of a 4-bit word. The instruction is taken from memory and placed in a
register. The instruction 1011 shown sets the logic gates so that A, B, and 0 are
available for processing. Other instructions and the outputs are shown in the
table below. There are 24 = 2 x 32 possibilities.

A Design Procedure
In logic design, gates must be combined to realize the desired function. The
design proceeds according to the following steps.

66

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

1. Statement of function
2. Form a truth table
3. Obtain the Boolean expression of the function
4. Manipulate the Boolean expression to the simplest form
5. Realize in terms of AND, OR and NOT gates

Example
For increased reliability on a spacecraft triple sensing systems are
used; no action is taken unless at least two of those systems call for
action. The required system is known as a vote taker whose truth
table is shown below:

Because the function is YES(1) only when a majority of inputs are YES,
the Boolean expression is:

67

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

If the complement of each variable is available (true in most
computers), the realization is a combination of four AND gates
feeding an OR gate:

If the complements are not available eight logic elements (three NOT
elements) would be required, and simplification of the circuit is
desirable. We proceed as follows:

68

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

This function requires only four logic elements as shown below:

69

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Two-Level Canonical Forms
A Boolean function can be written in different forms. Certain forms, however,
lead to more desirable combinational networks. These forms which are canonical
forms are of two types: sum of products and product of sums.

Sum of Products
We have used the sum of products form in our earlier work. A sum of products
expression is formed as follows. Each row of the truth table in which the function
takes on the value 1 contributes an ANDed term. These are called minterms. A
minterm is defined as an ANDed product of literals in which each variable appears
exactly once in either normal or complemented form, but not both. The minterms
are then ORed to form the expression for the function. The minterm expression is
equivalent since it is derived from the truth table.

The figure below shows a truth table for an arbitrary function f and its
complement. The minterms and maxterms for each row are also shown. The
minterm expressions for f and f NOT are:

Truth table which above is based on:

70

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The above expression can be written in a shorthand notation. Note that the
indexing of the Boolean variables is important in deriving the minterm and
maxterm. In shorthand notation we have:

Where means the sum of all the minterms whose subscript i is given
inside the parentheses.

The minterm expression is not likely to be the simplest form of the function. The
expression for f can be reduced by using Boolean algebra.

71

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The minimized gate-level implementation of f is shown below:

The expression f NOT can also be reduced:

72

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Product of Sums
A product of sums expressions is formed as follows. Each row of the truth table in
which the function takes on the value 0 contributes an ORed therm. These are
called maxterms. A maxterm is defined as an ORed sum of literals in which each
variable appears exactly once in either true or completed form, but not both. The
maxterms are then ANDed to form the expression for the function. This is
opposite to the way we formed minterms.

The products of sum of functions f and f NOT is obtained from the truth table as:

Using a shorthand notation we can write f and f NOT as:

Where means the product of all the maxterms whose subscript I is
given inside the parentheses.

Conversion Between Canonical Forms
One canonical form can be mapped into the other by applying De Morgan’s
Theorem. For example if we apply DeMorgan’s Theorem to the minterm
expansion of f NOT we get:

73

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Or:

Which is the maxterm expansion of f. Similarly applying DeMorgan’s Theorem to
them maxterm expansion of f NOT gives:

Or using 19:

Which is the maxterm expansion of f.

The minimized product of sums form can be found by starting with the minimized
sum of products form of f NOT and using DeMorgan’s Theorem.

74

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Or using 20:

The minimized gate-level implementation is shown below:

Positive Versus Negative Logic
So far, we have assumed that logic 1 is represented by a higher voltage than logic
0. This is known as positive logic. If we use the low voltage to represent the
asserted signal and the high voltage to represent the unasserted signal we have
negative logic.

Consider a truth table given in terms of high and low voltages:

75

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

In the positive logic case the truth table describes an AND function, whereas, in
the negative logic case we obtain an OR function. This is to be expected since an
AND function and an OR function are duals, by replacing 0’s in one truth table
with 1’s in the other, and vice versa.

Given a function is positive logic, the equivalent negative logic can be found by
applying duality. For example the dual of the NOR function is the NAND function.

76

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Minimization by Mapping
The optimum form of a logic circuit is desired. The criteria is often ONE of the
following:

a) Maximum speed – fastest logic implementation

Or:

b) Minimum cost – fewest gate levels because the number of levels
determines the cost of manufacturing and the cost of assembly.

Or:

c) Minimum design time – if only a few circuits are required

Boolean algebra can be used to devise simpler logic expressions. If the truth table
is available or if the logic function is expressed as a sum of products we can go
directly to a minimum expression by a mapping technique from Maurice
Karnaugh.

Karnaugh Maps (K-Maps)
The K-map of the general logic function of three variables is shown below. Each
square in the map corresponds to one of the eight possible combinations of the
three variables. The order of the columns is such that combinations in adjacent
squares different only in the value of one variable.

77

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

We see that 2-square groups are independent of one variable. E.g.: for the groups
circled:

As shown above those relations are easily determined using Boolean algebra, but
they are obvious by inspection of the K-maps.

We can extend the groupings from adjacent squares as shown below where the
labels are omitted from the squares.

We see that 4-square groups are independent of the variables, e.g.:

78

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Enlarging groups by overlapping simplifies the table. Note that the map is
continuous, in that the last column on the right is “adjacent” to the first column in
the left:

79

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The standard labeling for K-maps (shown below) is convenient for mapping from
the truth table.

80

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Each square in the map corresponds to a row in the truth table. A specific logic
function is mapping by placing a 1 in each square for which the function is 1.
Possible simplifications are then easily recognized.

Example
Map the vote-taker function and simplify the circuit realization, if
possible. From the truth table of the vote taker function:

We first place 1’s in the squares corresponding to the tows in the
truth table for which the result of the function is 1, resulting:

81

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

All the 1’s can be included in three overlapping 2-square groups. The
complete function can be represented by:

This is the simplest expression for the function. By using DeMorgan’s
Theorem, any “sum of products” can be converted into a “NANDed
product of NAND’s”. In this case:

Which can be synthesized using NAND gates only:

Example
Map the full-adder sum and conjugate functions. Obtain the simplest
forms of the function. The truth table is as follows:

82

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Because there is two output functions, we have two separate K-
maps:

83

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

From the K-maps we see that the simplest form for the sum is given
by:

And the simplest form for the conjugate is given by:

Both of these results agree with the earlier results. Note that the
conjugate function is the same as the vote-taker function of the last
example.

Mapping in Four Variables
K-maps are useful in simplification functions involving four variables. Typically
once more than four variables are involved it becomes easier to use other
techniques. A four-variable K-map is shown below:

84

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

As indicated in the figures below (where standard labeling for K-maps is used):

• 2-square groups are independent of one variable
• 4-square groups are independent of two variables
• 8-square groups are independent of three variables

Note that adjacent rows different by only one complement bar, and the bottom
row is adjacent to the top row with the left column adjacent to the right.

85

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The four corner squares for the groups .

Some general guidelines for finding the minimal expression for a K-map are:

a) Include all 1’s in groups of eight, four, two, or one.
b) Groups may overlap; larger groups result in simpler terms
c) Of the possible selection of terms, select the simplest

Example
Map the function:

And obtain a minimum sum of products expression.

Using DeMorgan’s theorem the given expression can be written as:

The K-map is given below:

86

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

All the 1’s can be included in two 4-square and one 2-square groups.
Thus:

Note that the other expressions are possible but none with fewer,
simpler terms.

Example
Map the function:

And find the minimal sum of products form

The K-Map is shown below:

From the map we see that the minimum f is:

87

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Again other arrangements are possible, but not minimal.

Five-Variable Maps
Maps for more than four variables are not as simple to use. A five-variable map
needs 32 squares and a six-variable map needs 64 squares. With a large number
of variables the number of squares is large and the geometry for combining
adjacent squares is made convoluted.

The five-variable map shown below consist of 2 four-variable maps with variables,
A,B,C,D, and E. Variable A distinguishes between the two maps. The left-hand
four-variable map represents the 16 squares where A=0, and the other four-
variable map represents the squares where A=1. Minterms 0 through 15 belong
with A=0, and minterms 16 through 31 with A=1. Note that the numbering of the
minterms is important.

Each four-variable map retains the previously defined adjacency when taken
separately. In addition, each square in the A-0 map is adjacent to the
corresponding square in the A=1 maps. For example, minterm 4 is adjacent to
minterm 20 and minterm 15 to 31. The best way to visualize this new adjacency
rile is to cascade the two half maps as being one on top of the other. Any two
squares that fall one over the other are considered adjacent:

88

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Example
Simplify the Boolean function:

The filled in K-map is shown below, along with the simplified
function:

89

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Note the redundant agency has been omitted.

By following the procedure used for the five variable maps, it is possible to
construct a six-variable map using four of the 4-variable maps to obtain the
required 64 squares. For maps with N variables one must check for adjacencies in
N directions. Maps with six or more variables need too many squares and are
impractical to use. It is simpler to use computer programs written to simplify
Boolean functions with a large number of variables.

Comments on Maps
1. Two variable K-maps are shown below:

90

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

2. An N-Variable K-map has 2N cells.

3. In some circuits, certain combinations of inputs never occur. These don’t

care combinations map be mapped as X’s and considered as either 0’s or
1’s, whichever provides the greatest simplification.

4. In some circuits the simplest realization results from finding f NOT as the
sum of products and then inverting the result to obtain f.

5. The K-map can be used to find the minimum product of sums expression. In
this case we collect the maximal adjacent group of 0’s and write the
functions complement in the sum of product forms. Applying DeMorgan’s
Theorem we get the product of sums form.

Example of Points 4&5:
Given the following K-Map:

91

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Find f in the minimum product of sums form.

From the map we see that:

Therefor:

Using DeMorgan’s Theorem we get:

92

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Example
Use K-maps to synthesize a 2-bit binary adder whose diagram and
truth table are given below:

The adder has two 2-bit binary numbers N1 and N2 as inputs and
produces a 3-bit number, N3, as an output. In the truth table N1 is
represented by the inputs A&B, and N2 by C&D. The output is
represented by the Boolean function X,Y, and Z.

The K-maps for the outputs are shown below. From the maps we can
write the function X, Y, and Z:

93

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

94

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The functions can be synthesized as shown below:

Some More Notes: Implicants
1) An implicant of a function f is a single or group of elements that can be

combined together in a K-map.

95

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

2) A prime implicant is an implicant that cannot be combined with another

one to eliminate a literal.

3) If a particular element is covered by a single prime implicant, it is called an
essential prime implicant.

Example
The logic box for a controller with inputs S2, S1, S0, C1, and C2 has to
be designed using combinational logic gates. For the truth tables
given below where B, I and R are outputs. Use the five variable K map
procedure to draw the minimum circuit necessary to complete the
table.

96

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The resulting K-Maps are shown below:

97

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

98

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

From the K-maps we see that:

The minimum circuit is shown below:

99

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

100

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Multilevel Combinational Logic
Consider the function:

Which is in its numerical sum of products form. The corresponding logic circuit is
shown below:

We see that as a two-level network of AND and OR gates it requires six 3-input
AND gates and one 7-input OR gate for a total of seven gates and 19 literals.

We can replace the two-level form with a factored form as follows:

101

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Or:

The corresponding circuit is shown below:

The result is a three (3) level network which requires one 3-input OR gate, two 2-
input OR gates, and a 3-input AND gate for a total of four gates and seven literals.

We have reduced the number of wires and gates required but this
implementation probably has more delay because of the increased levels of logic.
In general, multilevel circuits are more gate efficient than the corresponding two-
level circuits but have worse propagation delay.

102

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Conversion to NAND and NOR Networks
The canonical forms studied so far are expressed in terms of AND and OR gates. In
practice it is more efficient to use NAND and NOR gates. We will now see how to
map a network with AND and OR gates into that consisting only of NAND or NOR
gates.

As can be seen from the truth tables below:

i) An OR gate is logically equivalent to a NAND gate with its inputs inverted
ii) A NAND gate is equivalent to an OR gate with its inputs inverted
iii) An AND gate is equivalent to a NOR gate with its inputs inverted
iv) A NOR gate is equivalent to an AND gate with its inputs inverted

The graphic symbols for each gate are shown below:

To obtain a multilevel NAND circuit from a Boolean expression, proceed as
follows:

103

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

1. From the given Boolean expression, draw the logic diagram with AND, OR,
and NOT inverter gates. Assume that both the normal and complement
inputs are available.

2. Convert all AND gates to NAND gates with AND-invert graphic symbols:

3. Convert all OR gates to NAND gates with invert-OR graphic symbols:

4. Check all small circles in the diagram. For every small circle that is not

compensated by another small circle along the same long, insert an inerter
(one-input NAND gate) or complement the input variable:

Example
Given the function:

104

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Draw the logic diagram in the AND/OR form and convert to NAND
logic.

The AND/OR form is shown below:

There are four levels of gates in the circuit. Using the procedure
given earlier obtain the NAND diagram using two symbols:

105

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Note that the literal B input to the second level NAND gate must be
inverted to preserve the original sense of the signal. Since it does not
matter whether we use AND-invert or the invert-OR symbols to
represent a NAND gate, the diagram below is identical to the one
above:

To obtain a multilevel NOR circuit from a Boolean expression, proceed as
follows:
1. Draw the AND-OR logic diagram from the given algebraic expression.

Assume that both the normal and complement inputs are available.

2. Convert all OR gates to NOR gates with OR-invert graphic symbols:

3. Convert all AND gates to NOR gates with invert-AND logic symbols:

4. Any small circle that is not complemented by another small circle along

the same line needs and inverter or the complementation of the input
variables.

106

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Example
Convert the function f of the last example to NOR logic.

Using the above procedure the AND/OR form is convert to the NOR
diagram below:

107

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Note the extra inversion required at the output. The final NOR only
circuit is shown below:

The inversion at the output has been implemented by a NOR gate
with both inputs tied to the same signal.

108

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Computer Aided Design Tools
Computer-Aided Design (CAD) is used to speed up the high level design process.
Besides allowing the exploration of design alternatives, design tools can improve
the quality of the design by simulating an implementation before physical
construction. Packages such as MIS-II developed at the University of California at
Berkley are available for this purpose.

NOTE: Since these notes were written a huge variety of newer tools are available.
One of the more popular is Eagle (www.cadsoftusa.com) although it has more
limited simulation support. Autotrax (www.kov.com) has fairly good simulation
support and an easier user interface.

http://www.cadsoftusa.com/
http://www.kov.com/

109

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Time Response in Combination Networks
The propagation of signals through a network is not instantaneous. These delays
may lead to logical errors at the outputs. Delays come from several sources:

Gate Delays

A gate delay is the amount of time it takes for a change at the gate input to
cause a change at the output. Various families of TTL have trade-offs between
delay and power. The faster a component, the more power it consumes.
Propagation delays often depend on whether the output is going from a low to
high (tLH) or from high to low (tHL). For example for the 7400 gate a typical tHL

= 7nS and tLH = 11 nS.

Timing Waveforms
As an example of a timing waveform consider the circuit shown below:

An input signal A passes through three inverters and is then ANDed with the
original signal. This implements the function:

This appears to be a useless function. However, examining the timing diagram
below shows that after the input A goes high, the output goes high for a short
time before going low. This circuit is called a pulse shaper.

110

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

To see how the circuit operations, assume that the initial state has A=0, B=1, C=0,
D=1, and f=0 as shown at t=0. Further, assume that each gate has a propagation
delay of 10 time units. When A changes from 0 to 1 at time 10, B does not change
until time step 20, C at time step 30, and D at time step 40. We see that between
time 10 and 40, both A and D are at logic 1. If the AND gate also has a 10-unit gate
delay, the output f will be high between time stops 20 and 50. The pulse f is three
inverter delays wide. To change the width, use a different number of inverters.

111

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Hazards and Glitches
A glitch is an unintended pulse at the output of a combinational logic network. A
circuit with the potential for a glitch is said to have a hazard.

The circuit below demonstrates the occurrence of a hazard. Assume that all inputs
are initially 1. The output of gate 1 will then be 1, that of gate 2 will be 0, and the
output of the circuit will be 1.

Let B change from 1 to 0. The output of gate 1 changes to 0 and that of gate 2
changes to 1, leaving the output at 1. The output may momentarily go to 0 if the
delay through the inverter is large enough. The delay may cause the output of
gate 1 to change to 0 before the output of gate 2 changes to 1. In this case both
inputs to gate 3 are momentarily equal to 0, causing the output to go to 0 for a
short time.

The figure below is a NAND implementation of the same Boolean function. It has
a hazard for the same reason:

112

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

When B changes from 1 to 0, both inputs of gate 3 may equal 1, causing a
momentary change to 0 in the output.

The circuits above implement the Boolean function in the sum of products:

For this circuit the output may go to 0 when it should remain at 1. The K-map for
the above circuit is shown below:

113

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

From the zero location the circuit can be implemented in product of sum form:

In this form the output may momentarily go to 1 when it should remain 0. The
first case is a static 1-hazard and the second case is a static 0-hazard. A third type
of hazard known as a dynamic hazard causes the output to change three or more
times when it should change from a 1 to 0 or from a 0 to 1. The figure below
shows the three types of hazards:

The occurrence of a hazard can be detected by inspecting the K-maps of the
particular circuit. For example consider the K-map of the above AND-OR circuit:

The change in B from 1 to 0 moves the circuit from minterm 111 to minterm 101.
The hazard exists because the change of input results in a different product term
implicant covering the two minterms. Minterm 111 is covered by the product
term implemented in gate 1, and minterm 101 is covered by the product term
implemented in gate 2. Whenever the circuit moves from one product term to

114

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

another, there is a possibility of a momentary interval when neither term is equal
to 1, giving rise to an undesirable 0 output.

Hazards can be eliminated by enclosing the two minterms in a function with
another product term that covers both groupings. This is shown in the K-map
below:

The hazard-free circuit is shown below. The extra gate in the circuit generates the
product term A●C. The removal of the hazard requires the addition of redundant
gates to the circuit.

Notes
1. In two-level networks when a circuit is synthesized in sum of

products with AND-OR gates or with NAND gates, the removal of
static 1-hazard guarantees that no static 0-hazards or dynamic
hazards will occur.

115

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

2. Methods for eliminating hazards always depend on the
assumption that the unexpected changes in the output are in
response to single-bit changes in the inputs.

Hazards in Multilevel Networks
Begin by mapping the multilevel function into a two-level form called the
transient output function. In forming this function the variable and its
complement are treated as independent variables. This means that one cannot
use the Boolean laws A A=0• and A+A=1, since the former introduces static 0-
hazards, and the latter leads to static 1-hazards. In addition we cannot use any of
the simplification theorems derived from these Boolean laws. Since the
distributive laws can never introduce a hazard, it can be used freely to simplify a
function.

A static hazard-free network is assured if the function is put in such a form that
the transient output function guarantees that every set of adjacent 1’s in the K-
map are covered by a term, and that no terms contain both a variable and its
complement. The first condition eliminates 1-hazards and the second eliminates
0-hazards.

Dynamic hazards occur because of the multiple paths in the multilevel network,
each with different time delays. Since it is difficult to eliminate dynamic hazards in
multilevel networks it is best to implement the network as a hazard-free two-level
network.

Example
Consider the multilevel function:

Design and implement a static hazard free network.

Now:

116

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

This is the transient output function in sum of products form. Note
that since A and its complement are treated as independent variables
all the terms must be kept. Note the function is in two-level form. To
check for static 1-hazards we draw the k-maps as shown below:

Note that the term A A• can never cause a 1-hazard. With the
groupings as shown the function contains static 1-hazards, such as
the transition from ABCD = 1111 to 0111, or 1111 to 1101.

To eliminate these hazards add redundant prime implicants AB and
BD as shown. The function then becomes:

117

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Note that since AB completely covers the term ABC it does not
appear in f1.

To verify that f1 is free of static 0-hazards, we proceed as follows:
From the circled 0’s in the K-map we see that:

118

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The function has a 0-hazard on the transition from 1010 to 0010. The
problem can be corrected by multiplying f2 by the implicant (
B C D+ +) as indicated by the K-map. The resulting function is now:

Both expressions are simultaneously free of static 0- and 1-hazards.

To implement consider the expression for f1 and factor to obtain a multilevel
static-hazard free expression:

119

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

This is a three-level circuit requiring five gates.

120

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Programmable and Steering Logic
AND and OR gates (or NOR and NAND gates) can be arranged into a generalized
array structure whose connections can be programmed to implement a specific
function. Such general-purpose logic building blocks are called PAL’s
(programmable array logic) or PLA’s (programmable logic arrays).

PAL’s and PLA’s
Array logic components are multi-input/multi-output devices, typically organized
into an AND subarray and an OR subarray. The AND subarray maps the inputs into
particular product terms, depending on the programmed connections. The OR
subarray takes those terms and OR’s them together to produce the final sum of
products expression.

The details of the programming process depend on the particular integrated
circuit. One technique places fuses between all possible inputs to a gate and the
gate itself. By place a high current through selected fuses they are blown and the
selected paths are disconnected.

A commonly used notation for representing the technology of array logic is shown
below. The single wires entering the AND and OR gates represent multiple inputs.
The X’s represent the fuse locations.

121

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The Difference Between PLA’s and PAL’s
The above figure implies that both the AND and OR subarrays can be personalized
in any way the designer wants. Devices with this generality are called
Programmable Logic Arrays (PLA’s). However, not all programmable logic is fully
programmable. Some devices have a programmable AND array but the
connections between product terms and specific OR gates are hardwired. The
number of product term inputs to an OR gate is internally limited to 2,4,8, or 16.
Such devices are called programmable array logic (PAL). The figure below shows a
4 input / 4 product-term / 2 output PAL organized with a particular fixed OR array.
The OR gates for this case are limited to the product terms each.

The main difference between PLA’s and PAL’s is that the former can take
advantage of shared product terms and the latter cannot.

122

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

For devices with an equivalent internal capability, a PLA is able to implement a
more complex collection of functions than a PAL if many product terms are
shared. A PLA will, however, be slower because of the relatively higher resistance
of fuse-based connections than standard wire connections.

Example: BCD-to-Gray-Code Converter
Design a code converter that maps a 4-bit Binary Coded Decimal
(BCD) number into a 4-bit Gray code number.

Each number in a Gray code sequence differs from its predecessor by
1 bit. The circuit has four inputs A,B,C,D which represent the BCD
number, and four outputs W,X,Y,Z which represent the 4-bit Gray
code word.

The truth table is shown below:

123

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The K-maps are shown below with the prime implicants circled:

124

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The reduced equations are:

125

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Since there are no shared product terms, a PAL will be used to
implement the functions. Note that hazards are of no concern here
since the only possible adjacency is in the K-maps for Z and this
occurs in a don’t care situation.

The PAL as shown below contains four 4-input OR gates. Many AND
gates are being waster. A PLA could be used to implement the
function but would be slower. The programmable logic approach
implements two functions in a single integrated circuit package.

126

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

127

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Design Procedure
A design procedure consist of the following steps:

1. Understand the problem.
2. Formulate the problem in terms of a truth table or other suitable design

representation.
3. Follow implementation procedure. Synthesize minimized expressions for a

two-level sum of products combinational network.
4. Choose implementation technology (PLA/PAL).

Example: BCD-to-7-Segment Display Converter
Design a combinational circuit that maps a 4-bit BCD digit to the
segments that control a seven-segment display.

The display element contains seven light-emitting diodes (LEDs).
When the appropriate LED control line is asserted, the associated
LED segment lights. We will assume that the LED driver inputs are
active high (most of the actual LED driver components are really
active low). Otherwise, the LED segment is off. The seven segments
are controlled independently; there is no limit to the number of
segments that could be illuminated at the same time. The figure
below shows the seven-segment display and its configuration
displaying each of the 10 possible BCD digits:

Step 2: Understand the Problem

128

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

What is the circuit supposed to do? What are the inputs and
outputs? There are four input signals, representing the 4-bit BCD
digits. There should be seven outputs, one for each of the LED
segments that must be controlled. A block diagram is shown
below:

Step 2: Formulate in Terms of a Truth Table

It is best to tabulate the input values with the desired outputs. For
example, the BCD representation for the digit 0 should cause the
LED segment 0,1,2,3,4, and 5 to illuminate. Hence, for the output
0000 the control signals C0 to C5 would be asserted, with C6
unasserted. For the input 0001, segments 1 & 2 are turned on,
while segments 0 and 3-6 are left off. In the table entry for 0001,
C1 and C2 are asserted, while the remainder are unasserted. The
whole truth table is shown below, where the only valid entries are
for decimal 0-9, corresponding to binary 0000-1001.

129

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Step 3: Implementation Procedure

Since we desire a two-level network we will use K-map
techniques. Note that seven 4-variable maps are required. The K-
maps with circled prime implicants are shown below:

130

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

From the K-maps we can write the following equations for the LED
segment control outputs:

131

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Step 4: Implementation

The PLA implementation is shown below. The limiting factor in a PLA
is the number of unique product terms to implement the outputs.
There are fifteen required product terms in the above set of
equations. A typical PLA component can handle sixteen inputs, eight
outputs, and forty-eight product terms. From the K-maps one can see
that the hazards are not of concern in this problem. CAD methods
can be used to find a multi-level solution.

132

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

133

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Beyond Simple Logic Gates
Switching Logic
Switching networks provide an alternative to discrete gates for constructing
digital systems. They operate by steering or directing inputs to outputs through a
network of switching paths rather than by computing a Boolean function.

A typical digital system has several sources of information and several
destinations. In practice the desired source is connected to a common path or bus
and the bus is then connected to the desired destination. This is called
multiplexing and is shown below:

A multiplexor or data selector selects the desired source and places its
information on the bus; a demultiplexer or data distributor transfers information
on the bus to the selected destination.

Multiplexer/Data Selector
A multiplexer, or MUX, is a combinational logic network with 2n data inputs, n
control inputs, and one data output. Depending on the settings of the control
inputs, a single data input is selected and steered to the outputs. Since a
multiplexer selects an input for connection to the output is often referred to as a
data selector.

134

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The figure below gives a functional truth table in the left and a conventional truth
table on the right for a multiplexer with two data inputs, I0 and I1, and one
control input A:

The functional truth table indicates that we are passing a selected output to the
output. Using a Boolean equation, the two-input multiplexer can be described as:

If A=0, the output is given by I0. If A=1, the output is given by I1.

Multiplexors are described by the number of data inputs, since the number of
control inputs can be inferred from this. Hence, a 2:1 multiplexor has two data
inputs, one data output, and one control input. A 4:1 multiplexor has four data
inputs, one data output, and two control inputs. The figure below shows the block
diagrams for 2:1, 4:1, and 8:1 multiplexer:

135

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The Boolean equation for the 4:1 and 8:1 multiplexers can be generalized from
the 2:1 multiplexer:

Or in general:

136

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Example:
Design a 4:1 multiplexer. Show its block diagram, functional truth
table, and logic diagrams. Show how the multiplexer works by
considering the case where S1=1, S0=0. Assume the device is enabled,
i.e.: E=1.

The block diagram, functional truth table, and logic diagram are
shown below:

137

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Each of the four inputs I0 through I3 are selected by S0 and S1, and
directed to the output when the device is enabled. The equation
describing the above device is:

To see how the above device works consider the case where E=1,
S0=0, S1=1. Tracing the input signals I0 through I3, we get Q=I2 so only
the input whose address equals 2 is seen at the output.

Multiplexer as a Logic Building Block
A multiplexer can implement a general-purpose logic building block. A truth table
can be implemented directly into hardware by using a multiplexor. Consider the
function:

138

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The function can be implemented by an 8:1 multiplexer as shown below. The
input variables A,B, and C are connected to the multiplexer selection inputs. The
input Ii is set to 1 if the function includes minterm mi. All other inputs are set to 0.
In this case I0, I2, I6, and I7 are all set to 1, while I1, I3, I4, I5 are set to 0.

To illustrate, consider the case where A=B=C=0. This corresponds to minterm m0.
With these inputs the multiplexor will select I0 and set f=1. If A=B=0 and C=1, then
I1 is selected and f is set to 0, and so on.

In general, we see that by selecting n-1 variables as control inputs to a 2n-1 input
multiplexor, we can implement any Boolean function of a variable.

Example

Use a multiplexer to implement the function f(A,B,C,D) whose k-map
is given below.

139

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Since f is a function of four variables it can be implemented by an
eight-input multiplexer. Select A,B, and C as the control inputs. The k-
map is then partitioned into eight pars of k-map entries, each sharing
common values for the three control inputs. Each pair can be
replaced by either 0,1,D, or NOT D. f can be represented by the
equation:

The multiplexer is shown below:

140

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Two-, 4-, 8- and 16-to-1 multiplexers are commercially available as
MSI packages.

Decoders/Demultiplexer/Data Distribution
Decoders convert binary information from one coded form to another. As shown
below, the same unit can serve as a decoder or as a demultiplexer (data
distributor), depending on how the terminals are interpreted.

When enabled by E going high, the decoder places a 1 on the OUTPUT line
corresponding to the INPUT code; all other output lines remain LOW. When used

141

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

as a demultiplexer DATA from the bus is applied to the E terminal and appears on
the DESTINATION line selected by the ADDRESS.

A decoder/demultiplexer takes as input a single data input (an enable signal) and
n control signals, and uses the latter to assert one of 2n output lines. For example,
a 1:2 decoder/demultiplexer has two inputs, E(enable) and S(select), and two
outputs, Q0 and Q1. The Boolean equations for the outputs are as follows:

If E=0 both outputs are at 0. When E=1 the value of S0 determines which of the
two outputs will be driven high. The equations for the 2:3 demultiplexer are:

And for the 3:8 demultiplexer:

A decoder/demultiplexer is typically named by the number of control signals and
the number of output signals (e.g. 1:2, 2:4, 3:8). Compare with the multiplexer
naming: the number of data inputs and the number of data outputs (e.g. 2:1, 4:1,
8:1).

The truth table and logic diagram for a 2:4 demultiplexer are shown below:

142

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

To see how the input works consider the case where E=1, S1=0, S0=1. Tracing the
signals through we see that Q0 Q1 Q2 Q3 = 0100 so that only Q1 receives the
data.

Decoder/Demultiplexer as a Logic Building Block
A decoder can also be used as a “minterm generator”. The figure below shows a
3:8 decoder where the select lines have signals A,B,C. Each output is labeled with
the select line combination that causes that output to be asserted.

143

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

As an example, suppose the control signals A,B, and C are set to 0,1 and 0,

respectively. This corresponds to minterm and output Q2 is enabled.

The decoder can also be used as a general-purpose combinational logic building
block. Any function expressed in sum of products form over n variables can be
implemented by an n:2n decoder in conjunction with OR gates.

To illustrate consider the following three functions of the Boolean variables
A,B,C,D:

It is more convenient to express as the sum of 4-input minterms:

144

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The figure below uses a 4:16 decoder to implement these functions:

 f1 is asserted whenever any of its three minterms are asserted. By connection
A,B,C, and D to the decoder select lines, the output Q5, Q3, or Q15 will be
asserted if the inputs corresponds to the desired minterm. f1 is then
implemented by an OR gate connected to these decoder outputs.

In a similar manner, f2 is implemented by a three-input OR gate connected to
decoder outputs Q12, Q14, and Q15. f3is obtained by an inverter driven by the
Q15 decoder output.

This approach to implementing logic is useful for functions of a relatively small
number of variables, as decoders with more than four select inputs are not as
readily available, and a small number of minterms per function.

145

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Tri-State Gates
Besides 0 and 1, there is a third signal value in digital circuits: the high-impedance
state, denoted by Z. When a gates output is in a high-impedance state it is as
though the gate were disconnected from the output. Gates that can be placed in
such a state are called tri-state gates with outputs 0,1, and Z. In addition to its
normal inputs, a tri-state has another input called output enable. When this input
is 0, the output is Z. When the output enable is 1, the gates output is determined
by its data inputs.

The truth table of a tri-state buffer gate is shown below. When output enable
(OE) equals 0, the output is Z, no matter what the input A is. When OE=1 the
buffer passes its input to the output.

The symbol for the buffer gate is shown below:

Tri-state buffer gates are useful for situations such as a bidirectional data bus,
where two drivers are both connected to the same wire. One side must always
have their driver in the high-impedance state so the other side can drive the wire.

To see how tri-state gates work, consider the circuit below which consists of two
tri-state buffers (with active-high enables) and an inverter:

146

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

If the Select Input is 0 then I0 steers to f (the output of the I1 buffer is open), and if
it is 1 then I1 steers to f (the output of the I0 buffer is open).

147

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Sequential Logic Design
The basic logic gates are connected to form combinational circuits that make
decisions in response to the present inputs. In addition to these decision
components we need memory components to store instructions and results. The
outputs of these sequential circuits are affected by past inputs as well as present
inputs. A memory unit must have the following characteristics:

1. A binary storage device must have two (2) distinct states.
2. It must remain in one state until instructed to change.
3. It must change rapidly from one state to another, and the state value (0 or

1) must be clearly evident.

A simple memory component can be implemented from cascaded inverters. This
is the basic circuit structure using in static RAM (Random Access Memory)
designs. Alternatively, simple memory structures can be build using cross-coupled
NOR or NAND gates. These elements for the basic building blocks of the latch and
the flip-flop (bistable multivibrator) memory elements which are used in many
types of data processing systems.

Logic Gate Memory Units

Inverter Chains
Consider the circuit shown below:

 A 1 at the input to the first inverter becomes a 0 at the input to the second which
reinforces the value at the first inverters input. Similar a 0 at the input is also
reinforced. The circuit is a storage element. Some extra logic is required to open
the feedback path what the input is changed:

148

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Cascaded inverts can also be used to build circuits whose outputs oscillate
between low and high voltages. Such circuits are called ring oscillators. The figure
below shows an inverter chain and the associated timing waveform. The
waveform begins with A (=X). The odd number of inverters (five) results in a
period tp = 10 time units. Duty cycle is defined as the percentage of time a signal
is high during its period. In this case the signal has a 50% duty cycle.

In the ring oscillator, the duration of the period depends on the number of
inverters in the chain. That that in the example here each inverter has a unit
delay.

Cross-Coupled NOR Gates
In the NOR gate latch shown below the output of each NOR gate is fed back into
the input of the other gate:

149

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

 The operation is summarized in the table below where, to start, we assume the
present state of the output Q+ is 0 and the inputs to the set terminal S and the
reset terminal R are both 0.

To SET the latch, a 1 is applied to S only. For and

the present state of the output is inconsistent with the input, the

150

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

systems is unstable, and Q must flip. After Q changes, the present sate changes to

1, and becomes 0, hence =1, a stable state. Note that if either input to a NOR
gate is 1, the output is 0. Removing the input from S causes no chance. Hence this
is a stable state after being SET. Applying another input to S causes no change.

To RESET the latch, a 1 is applied to R only. This results in an unstable system and
 must flop to 0. A change in Q to 0 results in a stable output = 0. Removing

the input to R or applying another input to R produces no change. Hence = 0
and =1 is the stable state after being RESET.

Only very short pulses are needed for triggering. Attempting SET and RESET
simultaneously would create an ambiguous state with both and = 0. This is
unacceptable in a bistable unit and circuits are designed to avoid this condition.

Another way to represent the behavior of a cross-coupled NOR gates is called the
state diagram as shown below.

The circuits state depends on the value of Q and NOT Q (), so there are four
possible states. Since there are two inputs, S and R, there are four transitions for
each state.

151

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The states 01 and 10 are the normal ones for the circuit. When S=1, we enter
state 10 (Q=1, NOT Q = 0). When R=1, the state changes to 01 (Q=0, NOT Q = 1).
When S = R = 0 the current state is held.

When S=R=1 the circuit enters the forbidden state 00. It stays as long as those
inputs are held. As soon as one input returns to 0, the circuit returns to state 01
or 10. If the current state is 00 and S=R=0, the circuit enters the forbidden state
11. It does not stay very long before returning to state 00 if S and R remain 0. If
the delays are match the circuit can oscillate between these states forever. This is
known as a race condition. The circuit should never be put in state 00.

From the circuit for the RS latch or the table we can deduce the detailed truth
table for the latch as shown below:

Where Q+ is the next state output based on the current state Q and inputs S & R.

The K-map for the truth table is given below:

152

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

From the K-map we get the characteristic equation:

This equation summarizes the behavior of the RS latch. For example, if S=1 and
R=0, the next state Q+ becomes 1 independent of the current state. When S=0
and R=1, the next state is forced to 0, independent of the current state.

Timing Waveforms
In the RS latch a 1 input at S will SET the output Q to 1. To RESET the latch, a 1 is
applied to input R. The duration of the input (it must exceed a certain minimum
time) and the time at which the input signal is applied are not significant. Such a
latch responds to the asynchronous inputs.

A more sophisticated latch using two AND gates is shown below.

153

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Here an input is effective only when enabled by a 1 input at terminal E. In digital
systems composed of many elements, it is usually necessary for the outputs of all
elements to be synchronized. The synchronizing signal may come from a clock.
The enabling terminal is frequently designed CLOCK (CK). In a clocked system,
transactions cannot happen at random by occur in an order one-step-at-a-time
fashion. In addition to the synchronous inputs R and S, there may be
asynchronous inputs to clear or preset the flip-flops.

Flip-flips different from latches in that their outputs change only with respect to
the clock, whereas latches change outputs when their inputs change.

The operation of a clocked RS latch (or flip flop) is shown below. Initially, output
Q=0. If a 1 appears at SET, when ENABLE goes to 1 the flip-flop is set with Q=1. At
the next clock pulse, the presence of a 1 at RESET forces the output to 0. At any
time, a 1 at PRESET forces the output to 1; a 1 input at the CLEAR terminal
overrides other inputs and forces Q to 0.

The Data Latch
The symbol for a simple RS flip-flop (without PRESET or CLEAR) is shown below.
The ambiguous state which results when R=1 and S=1 simultaneously can be
avoided by modifying the circuit as shown in (B) below.

154

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

By connecting an inverter between the R and S terminal and using only one input
signal, the ambiguity is avoided and the number of terminals are decreased.
When ENABLE is HIGH, the output Q follows the input D, when ENABLE goes LOW,
no change in Q is possible, and the output is latched at the previous data value.

This data latch is widely used as an element in digital systems.

Example
The enable and data inputs to a data latch are shown below. The
product the waveform of the output.

The output Q follows input D whenever enabled (E=1). When E goes
to 0, the output remains latched in the previous condition.

In the figure, When E goes HIGH, D=1 so Q follows D and becomes 1.
As long as E is HIGH, Q follows any change in D. When E goes LOW,
Q=D=1 and remains so. The Q waveform is as shown.

155

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The D Flip-Flops
Sometimes it is desirable to delay the transfer of data from input to output. For
example, we may wish to maintain the present state Q, while a new state is being
read that will be transferred later. The D (delay) flip-flop is shown below:

It is a data latch with a second RS flip-flop. The data latch is enabled when the
clock signal goes LOW, but the following RS flip-flop is enabled when the clock
signal goes HIGH. We see that Q1 follows D whenever CK is LOW, but any change
in the output Q=Q2 is delayed until the next upward transition of CK. This is an
edge-triggered flip-flop; Q1 follows D while CK is LOW, then on the leading edge
of the clock pulse, the value of D is transferred to output Q. On the logic symbol,
the small triangle indicates an edge-triggered device.

156

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Because the output change only at the instant the clock goes HIGH, the output
can be synchronized without the outputs of other elements. In addition, a sudden
spurious change in D, like the one shown above, will not affect the output.

The truth table for the D flip-flip is shown below:

The k-maps as obtained from the above table is given below:

From the K-maps we get the characteristic equation:

Timing
Timing is more complicated in sequential circuits than in combination circuits
where glitches are the only concern. Sequential logic, on the other hand, must
examine both the current input & current state to determine the outputs and the
next state. In addition, outputs can change in response to clocking changes as well
as input changes.

For proper operation the data must be stable for a few nanoseconds before the
device is clocked (called the setup time or tsu) and must remain stable for a few

157

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

nanoseconds after the clocking is initiated (the hold time, th). The figure below
shows the timing constraints for a typical edge-triggered flip-flop. In the diagram
tw is the clock signal minimum duration, thl is the propagation delay from high to
low, and tlh the propagation delay from low to high. Typical numbers are: tw = 25
nS, tsu = 20 nS, th = 5 nS, thl = 25 nS, tlh = 13 nS.

The JK-Flip Flop
A very popular memory unit is the JK flip-flop shown below. In its most common
form, the output changes state on downward transitions of the clock pulses. The
small circle on the symbol identifies this as a falling-edge-triggered flip-flop. The
operation is improved by using a master flip-flop that is enabled on the upward
transition of the clock pulse while the slave flip-flop is inactive. The slave is
enabled on the downward transition and follows its master, i.e. it takes on the
state of the master.

158

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Because of the feedback connections from the output to the input, the output of
the JK flip-flop depends on the state of the inputs and outputs at the instant the
clock goes LOW. In addition the ambiguity (R=S=1) is avoided. A truth table
showing S1, R1, Q+ (the next output state) for all values of J, K, and Q (the present
output state) is shown below:

From the truth table we see the following modes of response are possible:

1. With inputs J=K=0 the clock as no effect, and the flip-flop remains in its
present state Q.

2. When J and K unequal, the unit behaves like an RS flip-flop where J=S and
K=R. That is J=1 K=0 SETs the output on falling clock edge, and J=0 K=1
RESETS the output on falling clock edge.

159

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

3. With inputs J=K=1 the flip-flop toggles; that is the output changes each time
the clock goes low.

The K-map for the truth table is given below:

From the K-map we get the characteristic equation:

This equation summarizes the behavior of the JK flip-flop.

Example:
Two JK flip-flops that respond to downward transitions are
connected in tandem as shown. For a 2 KHz square wave input,
determine the output:

Since we have 1 inputs at both J and K, the output will change each
time the clock goes LOW. For a 2 KHz square wave input the output
of the first flip-flop will be a 1 KHz square wave. Since this is the input
to the second flip-flop, its output will be 500 Hz.

160

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The JK flip-flop is used in a number of digital computer applications such as
counters, arithmetic units, and registers. For greater flexibility, some versions
include PRESET and CLEAR capabilities as shown below. In the unit shown PR and
CLR are normally held HIGH.

The small circles (inversion, or “active low”) indicate that if PR goes LOW, Q is
forced to 1; where is CLR goes LOW, Q is forced to 0.

Example
Connect a JK flip-flop to function as a data latch. That is, when it is
ENABLED, the DATA is to be transferred to Q when clock goes LOW.

Logically this means that: when ENABLED, Q should follow J=D, which
requires K is not equal to J. When DISABLED, Q should remain
“latched” in its present state, which requires K=J=0. Thus:

161

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Which results in the following logic synthesis:

The T Flip-Flop
With the J & K inputs tied together (resulting in one terminal), the JK unit
becomes the T or toggle flip-flop as shown below:

For T=0 (J=K=0) the clock pulse has no effect on output Q. For T=1 (J=K=1), the
flip-flop toggles each time CK goes to LOW. The waveforms shows that for T held
HIGH, the output is a square wave of half the frequency of the clock; the device is
a frequency divider.

The truth table for a T flip-flop is shown below:

162

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The K-map is obtained from the above table and shown below:

Finally from the K-Map we can get the characteristic equation:

Conversion of One Flip-Flop Type to Another
Any flip-flop can be implemented as combinational logic for the next state
function in conjunction with a flip-flop of another type.

A general procedure to map amount the different kinds of flip-flops is based on
the concept of an excitation table. This table lists all possible state transitions and
the values of the flip-flop inputs that cause a given transition to take place.

The figure below gives excitation tables for RS, D, JK, and T flip-flops.

163

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

If the current state is 0 and the next state is to be 0, then the first row of the table
describes the flip-flop inputs to cause that state transition to take place. For the
RS latch it doesn’t matter the value on R provided that S=0. If using a D flip-flop
the input is set to the next discrete state, which is 0 in this case.

If a JK flip-flop us being using, the transition from 0 to 0 occurs when J=0. The
value of K does not matter. If using a T flip-flop, the transition does not change
the current state, so the input should be 0. The same kind of analysis can be
applied to complete the excitation table for the three other cases.

The procedure is to use the excitation table for the flip-flops in question to form a
K-map. The K-map layout is for the desired flip-flop and the values entered are for
the flip-flops being used. The method is elaborated in the following examples.

Example: JK with D
Show how to implement a JK flip-flop starting with a D flip flop.

The excitation table for the JK and D flip-flops are shown below. The
K-map is formed for the JK flip-flops with the values for the D flip-
flops entered in the map.

164

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

From the map we see that:

Note that since the transition from 100 to 101 does not change the
state of the flip-flops the hazard is of no concern. The
implementation is shown below:

Example: D with JK
Show how to implement a D flip-flip starting with a JK flip-flop.

165

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The excitation table is as in the last example. The K-maps are formed
for the D flip-flops with values for J and K entries in the maps:

From the maps we see that:

Thus the implementation becomes:

Example: RS from JK
Implement an RS flip-flop starting with a JK flip-flop.

The excitation table for the RS and JK flip-flops is shown below:

166

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The K-maps for the RS are formed from with JK values entered in the
maps:

From the K-maps we see that:

Thus:

Example: JK from RS
Implement a JK flip-flop starting with a RS flip-flop.

The excitation table for the RS and JK flip-flops is shown below:

167

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The K-maps for the JK are formed from with RS values entered in the
maps:

We see that:

Thus:

Sets of flip-flops can be used to represent binary numbers in which each digit
corresponds to a value of Q (0 or 1) of a flip-flop. A register is a set of flip-flops in

168

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

which binary data can be stored. Flip-flops can be connected to serve as a counter
in which the number stored is the number of events being counted.

Practical Matters
Logic gates and memory elements are available in IC form which are small in size,
have low power consumption, and have low cost. Typically they are used in DIP
(Dual In-line Package), with 14 or 16 pins. A photo of a 14-pin DIP is shown below:

Diagrams for TTL dual D and JK flip-flops are shown below, where the pin
numbers correspond to pins on the above package.

169

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Debouncing Switches
When a switch is flipped from one terminal to another, it does not make a clean,
solid contact with the new terminal. Instead, it bounces several times before
coming to rest. Because of this and the fact that TTL chips treat floating inputs as
1’s, there are several transitions from 1 to 0. This cause errors in reading the
switches output. The following diagram shows an example of switch bounce:

If the switch was for example counting votes, that single push would be read as
several quick pushes.

The problem is solved by using an RS latch. The figure below shows an RS latch, a
single pole double throw (SPDT) switch, and two resistors connected to ground:

170

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

When the switch is in the reset position, R is high and Q is low. If the switch is
moved so that it is in transition towards S, the grounded resistors pulls the latch
low. The latch is in its holding state since both inputs are 0.

When the switch first touches S the latch goes high and Q=1. If the switch
bounces, temporarily breaking the connection, the latch input returns to 0,
leaving the latch in a holding state. If the switch bounces back, remaking the S
connection, the latch is set again and so no state change occurs.

As long as the switch does not bounce enough to remake R, the Q output will
remain high as long as the switch is bouncing into its final position.

A similar analysis applies for a switch moving from S to R.

The 555 Timer
The 555 timer is a programmable timer chip. The circuit diagram is shown below:

171

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The period an duty cycle are determined by placing the appropriate resistors and
capacitors between the pins. The following formula are used to calculate the
clocks characteristics:

 Clock high time = 0.7 (Ra + Rb) C1

 Clock low time = 0.7 (Rb) C1

 Clock Period = high time + low time = 0.7 (Ra + 2Rb) C1

 Clock Frequency = 1 / (Clock Period)

 Duty Cycle = (Ra + Rb) / (Ra + 2Rb)

Note that the 555 timer draws large currents for short periods of time when the
output changes state. To minimize the resulting spikes that can upset the rest of
the circuit it is important to put a 0.1 uF bypass capacitor from the 5V pin, pin 4,
to ground.

Example:
Design a clock signal with a period of 500 uS and a 75% duty cycle.

Clock frequency = 1/period = 1/500E-6 = 2000 Hz = 2 KHz

172

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Sequential Logic Applications
In this section we will examine three useful sequential logic components:
registers, counters, and memories.

Registers
In addition to logic circuits that process data, digital systems must include
memory devices to store data and results. A flip-flop can store or “remember”
one digit of a binary number, one bit. A register is an array of flip-flops that can
temporarily store data or information in digital form. A great variety of registers
are available in IC form.

Shift Registers
The serial shift register below consists of four trailing-edge-triggered JK flip-flops
connected so that J ≠ K. At the trailing edge of each clock pulse Q follows J in each
flip-flop of the 4-bit register. The data are entered serially, that is, one bit at a
time, and shifted right through the register at each clock pulse.

173

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The table below shows how 0100 would be placed in the register:

Begin with the least significant bit. With a 0 at IN=JA and K ≠ J, at the trailing edge
of the first clock pulse (CP1), QA follows JA and the LSB is transferred to the output
of flip-flop A. During the next clock cycle, B=QA=0 and the second bit, a 1, is
applied at IN = JA. At CP2, the 0 is transferred to QB (i.e., shifted one position to
the right) and the 1 is transferred to QA. After four clock pulses, the 4-bit number
is stored in the register and 0110 is available at parallel outputs ABCD. An

174

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

application of this register is an serial-to-parallel converter. A single input line and
four output lines are required.

The shift register shown below consists of D flip-flops with CLEAR and PRESET. The
symbols indicate that the flip-flops are cleared to 0 if CLR goes LOW while PR is
inactive (HIGH) (clearing is independent of the clock level). On the positive-going
edge of the clock signal, the input at D is transferred to Q.

Since both inputs and outputs are accessible this unit can function as:

i. A 4-bit storage register (serial or parallel)
ii. As a serial-to-parallel converter

iii. As a parallel-to-serial converter

For function (iii), all stages are cleared to 0, and the input data are applied to the
A,B,C,D INPUTS. A HIGH signal to PRESET ENABLE is NANDed with any 1 input to
send PR LOW setting Q to 1 in that stage (independent of the clock level). At the
next upward transition of the clock pulse (unless the clock is inhibited), the data
are shifted to the right; the value of QD is output and the valued of QC is
transferred to QD, etc.

175

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

A Practical Register
The 74173 TTL is a 4-bit register incorporating D flip-flops. The pin diagram is
shown below:

For M+N=0, normal logic states are available; for M+N=1, the outputs are
disconnected. When both G1 and G2 are LOW, data at the D inputs are loaded on
the next positive transition of the CLOCK.

176

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Counters
Flip-flops can be connected as counters to count random events, or to divide a
frequency or to measure a parameter (e.g.: time, distance, speed).

Counters are used to keep track of operations in digital computers and in
instrumentation. JK, T and D flip-flops are used in counter design.

Types of Counters

Divide-by-n Circuits
A divide-by-n counter produces one output pulse for n input pulses: n is called the
“modulo” of the counter. As we see earlier a J-K flip-flop divides by two or four for
J&K help HIGH, the output Q is the number of CK inputs divided by two.

Two D flip-flops can be used to obtain a divide-by-four circuit as shown below:

177

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

With QA and QB cleared (0), when clock sign f goes LOW, CK goes HIGH and DA =

AQ = 1 is transferred to QA. The next time f goes LOW, QA changes to low; time
cycles at f complete one cycle of QA, or QA=f/2. When QA goes low, A BQ CK= goes

HIGH and BBD =Q =1is transferred to BQ ; from cycles at f complete one cycle of BQ
or BQ = f/4.

Binary Ripple Counter
The counter shown below shows a 3-bit ripple counter using JK flip-flops in
cascade. With J and K held HIGH (the +5V connections are not shown), the flip-
flops toggle at each downward transition of the pulse at CK. The bit QA changes
state after each input pulse goes low. The next bit QB changes state whenever QA
goes LOW since QA supplies CKB. Similarly, QC changes state whenever QB goes
LOW.

178

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The table below shows the outputs QA, QB and QC for the first 8 clock pulses.
Note that this counter is counting from 000 to 111. After the count reaches 111,
counting begins again from 000. Thus, a 3-bit counter cycles through 8 states 000
through 111. Similarly, a 4-bit counter will cycle through 16 states, 0000 through
1111. In general, an n-bit ripple counter will cycle through 2n states, 0 through 2n-
1.

179

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Counters that cycle through 2n states, from 0 to 2n-1, are known as up-counters. In
some cases it is desirable to counter down, and the circuits are known as down-
counters. An n-bit ripple counter that cycles through the 2n states is known as a
divide-by-2n counter or as a modulo-2n binary counter.

The present unit is an asynchronous binary, modulo-8, ripple counter;
asynchronous because all flip-flops do not change at the same time; binary
because it follows the binary number sequence with bit values 20, 21, and 22;
modulo-8 because it counts through 8 distinct states; ripple because the changes
in state ripple through the stages.

Example
Design a modulo-5 binary counter using T flip-flops with CLEAR
capability.

Three stages are required to counter beyond 4. A modulo-5 counter
must counter up to 4 and then, on the fifth pulse, clear all flip-flops
to 0. The truth table is shown below:

180

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

At the count of 5, the 1’s at QA and QC can be NANDed. To generate a
CLEAR signal as shown below:

Decade Counters
Communication with humans is more convenient in the decimal system. Flip-flops
count in binary so binary numbers must be coded in decimal. To counter to 10 in
the 8-4-2-1 code, four flip-flops are required. Ten distinct states can be obtained
by modifying a 4-bit binary counter so that it skips the last six states. At counts in
a normal manner from 0 to 9, then feedback logic resets the next count to zero.

Example
Design an 8-4-2-1 BCD ripple counter as follows:

A. Draw a block diagram of a 4-stage binary ripple counter using T
flip-flops ABCD (T held HIGH).

B. Show the truth table of flip-flops for a decade counter that
counts normally to decimal 9 and then resets to 0000. How

181

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

does it differ from the truth table for a binary counter in the
tenth row?

C. Modifying the circuit to accomplish the following: On the
eighth count, the change in state of the D (MSB) flip-flop is to
disable the input to the B flip-flop so it will not change or
counter to 10. (see part (D)).

D. Modify the circuit so that on the tenth counter flip-flop D will
be reset to 0 by the output of A flip-flop, without affecting the
use of QC to toggle D.

E. Check the operation of the decade counter by drawing CK and
flip-flop waveforms.

The results are as follows:

1. The block diagram is shown below:

2. The truth table is shown below. Note that in the tenth row the
counter is set to 0000, whereas the binary counter would have
1010 in that row.

182

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

3.

4.

5. The waveforms are shown below:

183

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Synchronous Counters
One disadvantage of ripple counters is the slow speed of operation caused by the
long time required for changes in state to ripple through the flip-flops. In addition
these time delays can cause temporary state combinations (and voltage spikes
called glitches) that result in false synchronous counters in which all flip-flops
change state at the same instant.

In the synchronous counter shown below, T flip-flop A toggles, and the other flip-
flops are clocked. Flip-flop B toggles on the next counter after QA becomes 1, as
shown in the truth table. The AND gate causes flip-flop C to toggle on the next
counter after QA and QB = 1 as called for in the truth table.

184

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

In general, synchronous counters are fast and trouble free.

Ring Counters
The figure below shows a 4-bit ring counter using D flip-flops. As in a synchronous
counter, all flip-flops are triggered simultaneously; however, the output of each
flip-flop drives only the adjacent flip-flops. In a ring counter a single pulse
propagates through the ring, while all remaining flip-flops are at the zero-state.

185

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The truth table is shown below:

A modulo-N ring counter requires N flip-flops and no other gates.

Counter Design Procedure
Counters are the simplest possible finite-state machines. The typically have only a
single input instructing them to counter (after just the clock), and their outputs
are just the current state.

A generalizing design process consists of the following four steps:

1. From the written specifications of the counter draw a state transition
diagram that shows the counters desired sequence.

186

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

2. Design the state transition table from the state diagram, tabulating the
current stat with the next state in the count sequence. Each state-bit is
implemented by its own flip-flop.

3. Express each next-state bit as a combinational logic function of the current
state bits.

4. Choose a flip-flop for implementation of “remap” the next-state mapping
(K-maps) determined in step 3 to obtain the desired behavior from the
selected flip-flop.

Example: Generalized Counter Design
Design a 3-bit counter that advances through the sequence
000,010,011,101,110,000 and repeats. Not all the possible
combinations of the 3 bits represent a valid state. The unused states
001,100, and 111, can be used as don’t care conditions to simplify
the logic.

A. The state transition diagram is shown below:

187

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

B. The state transition table is shown below. Note, the storage
elements are named CBA.

C. To express each next-state bit as a combinational logic
function of the three current-state bits we draw the K-maps as
shown below.

188

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

D. Since this is almost a straight binary sequence we will use a T
flip-flops. The T flip-flops excitation table shown below will be
used to derive new next state K-maps:

The figure below shows the toggle inputs needed to
implement the desired state transitions:

For example, counter state 000 advances to 010, so the T
inputs should be 0 (don’t toggle) for C, 1 (toggle) for B, and 0
(don’t toggle) for A. Similarly, state 110 returns to 000. In this

189

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

case, the control for C, B, A is toggle, toggle, don’t toggle
respectively, or 110.

The remapped K-maps for toggle implementation are given
below:

Using the K-maps we obtain the minimalized functions:

190

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The implementation is shown in the figure below. To reduce
wiring complexity, the input and output networks are labeled
rather than drawn as wires. Two networks with the same label
are understood to be connected.

The timing waveform is also shown below. The proper
sequencing through the states 000, 010, 011, 101, 110, 000 is
clear from the waveform.

191

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Self-Starting Counters
The counter should never be assumed to start in a particular state unless it is
designed to do so. At power up the states are undefined; they could be 0 or 1 at
random.

This leads to a problem for counters that do not use all state combinations of the
storage elements. What happens if a counter enters one of the unused states at
start-up depends on how don’t cares have been mapped into 0’s and 1’s by the
implementation procedure. The counter could sequence through the non-counter
states and never enter the sequence it was designed for.

Verifying if a Counter is Self-Starting
A self-starting counter is one in which every possible state, even those not in the
desired counter sequence, has a sequence of transitions that eventually leads to a
valid counter state. Therefore, no matter how the counter starts up, it will
eventually enter the proper counter sequence.

In general, it is desirable to enter the counter sequence is as few transitions as
possible. However, it may be an advantage to depart from this rule if the
sequence of noncounter states leads to reduced hardware.

A procedure to check if the counter is self-starting is illustrated in the following
example.

192

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Example
Analyze the solution of the last example to check whether or not it is
self-starting.

First, replace the don’t cares in the K-maps for the toggle
implementation of the last example with the actually assigned 1’s
and 0’s (they are underlined in the figure below):

Since the K-maps represent the inputs to the toggle flip-flops they
will be used to determine the flip-flops next state as shown in the
diagram below. The next state is determined from the present state
and the toggle inputs as required by the toggle excitation table.

193

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The complete state transition diagram as obtained from the table is
shown below. Note the counter is self-starting. It may however
require two transitions before it is in the correct sequence.

Counter Reset
In the last example the particular starting state did not matter. It is more usual to
have a fixed starting state for the counter or finite-state machine.

194

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Flip-flops typically have preset and clear inputs. By use of those inputs any state
can be chosen as the starting state.

Implementation with Different Kinds of Flip-Flops
Toggle flip-flops are a natural choice for implementing binary counters, but other
flip-flop types may need less hardware for implementation.

We have shown how to implement the finite-state up-counter using toggle flip-
flops. We will now implement this counter using RS, JK, and D flip-flops.

Example Implementation with RS Flip-Flops
Implement the five-state up-counter of the earlier example using RS
flip-flops.

The first two steps of the counter design procedure – the state
transition diagram, the state transition table, and the next-state K-
map have already been performed. The next step starts with the RS
flip-flop excitation table as shown below:

This table will be used to determine the RS inputs needed to
implement the desired state transitions, as shown in the figure
below.

195

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The re-mapped K-maps for the RS implementation are given below.

Using the K-maps we obtain the minimized functions:

196

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The implementation is shown in the diagram below. The figure
doesn’t show the reset logic.

To check if the system is self-starting we replace the don’t care in the
K maps with the actually assigned 1’s and 0’s (see table below):

197

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The complete state transition diagram as obtained from the table is
shown below. Note that the counter is self-starting. It may take three
transitions before reaching the correct sequence.

Example Implementation with JK Flip-Flops
Implement the five-state up-counter of the earlier example using JK
flip-flops.

198

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

As in the last example the first three steps of the design procedure
have been performed. The last step starts with the JK flip-flops
excitation table as shown below.

From this table the JK inputs needed to implement the desired state
transition will be determined (see table below).

The remapped K-maps for the JK implementation are given below.

199

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Using the K-maps we obtain the minimized functions:

The implementation is shown in the diagram below. Again the reset
logic is not shown.

200

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

To check if the system is self-starting we replace the don’t cares in
the K-maps with the actually assigned 1’s and 0’s (see table below).

The complete state transition diagram as obtained from the table is
shown below. Note that the counter is self-starting. If may take three
transitions before reaching the correct sequence.

201

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Example Implementation with D Flip-Flops
Implement the five-state up-counter of the earlier example using D
flip-flops.

Again as in the last example the first three steps of the design
procedure have been performed. From the excitation table for the D
flip-flops shown below it is seen that the D inputs are identical to the
next-state outputs.

These are already tabled in the state transition table. We place the
next state outputs into K-maps and find the minimized functions. The
K-maps are identical to those obtained earlier in the original
example.

202

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Using the K-maps we obtain the minimized functions:

The implementation is shown in the diagram below. The reset logic is
not shown.

203

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

To check if the system is self-starting we replace the don’t cares in
the K-maps with the actually assigned 1’s and 0’s:

The complete state transition diagram as obtained from the table is
shown below. Note that the counter is self-starting. It may take two
transitions before reaching the correct sequence.

204

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Comparison & Summary of Different Implementations
The same state diagram led to the different implementation costs:

Flip-Flip Type Gates Literals Wires
T Flip-Flops 5 10 15
RS Flip-Flops 3 5 12
JK Flip-Flops 2 4 10
D Flip Flips 3 5 9

In general JK flip-flops usually result in the most gate and literal efficient
implementations. Since the RS flip-flops behavior is a subset of the JK, there is no
advantage in using RS devices.

T flip-flops are sorted for implementing straight-forward binary counters, but
their advantage is lost when the counter follows a sequence is not in direct binary
order. In the example considered the T flip-flop was the worst.

D flip-flops, although not the most gate efficient have same advantages. First,
they simplify the design procedure where the next-state remapping steps can be
skipped. Second, the wiring is not as complex. Wiring complexity is especially
important when using programmable logic technologies. Finally, D storage
elements are transistor efficient in MOS VLSI technologies.

205

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

In summary, for conventional packaged MSI/SSI TTL designs, JK flip-flops are
usually preferred, especially when the design criterion is minimum gate and literal
count. D-type devices are preferred when designing with programmable logic or
in more highly integrated technologies than TTL, where minimum wire count or
simplified design procedure is the objective.

The technique we have been discussing can be used in a reverse order to obtain
the state transition table and diagram when the final circuit implementation is
given.

Example
Find the state transition table and counter state diagram for the
implementation given below.

From the above diagram we see that:

206

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

We can now use the above expression along with the excitation table
for the JK flip-flop to obtain the state transition table.

The state transition diagram is given below:

From the above diagram we see that two of the eight counts are not
part of the counter sequence. However, since 111 -> 000 and 011 ->
100 the counter is self-starting.

207

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Memory
In digital computers instructions and numbers are stored in the memory. The
memory is an organized arrangement of elements called memory cells each of
which can store (“write”) data at any selected location (“address”) and retrieve
(“read”) the data at any later time. In Read-Only Memory (ROM), data we initially
and permanently stored by the manufacture or the user. The computer can read
the data at any address but cannot alter the stored data.

RAM
In the Read and Write Memory shown below, the k address lines can designed 2k
= m words whose n bits are carried on the n parallel input and output lines.

The memory includes an m x n matrix of memory cells. Each cell consists of a
binary storage element and the associated control logic. In the simple cell shown
below, the cell is selected when S goes HIGH. With R/W HIGH, the output is
enabled and the value of Q is read out on the output data line. With R/W LOW,
the input is enabled to units in the input data value.

208

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

An example of an elementary RAM with a capacitor of two 3-bit words is shown
below:

The address causes the decoder to activate one of the two word-select lines. In
the WRITE operation (R/W LOW), 3 bits of data are transformed from the input
lines to the selected word. In the READ operation the 3 bits of the selected word

209

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

are transferred to the output lines with the OR gates. The outputs of the
unselected words are all LOW.

Because the words in memory can be accessed in any order, we have a Random-
Access Memory (RAM). In the 2x3 RAM above, address selection is linear, since
one word-select line is activated. In large memories, selection is coincident since
each cell is accessed by addressing an X select line to select the row and a Y select
line to select the column. The intersection of the X and Y lines gives one cell in a
two-dimensional matrix.

There are two types of RAM, static and dynamic. SRAM retains its data as long as
power is applied without any further action from the computer. Each cell of a
static RAM is a flip-flop. DRAM requires continuous actions from the computer to
maintain its contents. Each cell in a dynamic RAM is a capacitor, which leaks
charge and therefor requires continuous recharging to maintain its value. SRAM is
used in microprocessor based systems that require small memory; DRAM is used
in large memory systems because of lower cost and greater density.

MOS devices are widely used because of their high packing density and low power
consumption. Bipolar RAM’s are very fast but are less compact and less energy
efficient than MOS RAM’s. They are used as a “scratch-pad” memory for data
being processed.

Example
An array of eight memory cells is arrange in two rows and four
columns. Design he addressing system consisting of a row decoder
and a column decoder. Assume a row or column is selected when
driven HIGH (logic 1).

A) Row 0 and 1 are selected by row-select (RS) values 0 and 1 and
columns 0 to 3 are selected similarly. Compare the truth tables for
RS and for CS1 and CS2.

B) Show the eight memory cells (lettered A through D and E through
H). Design the decoders using AND and NOT gates only and show
the two decoder circuits on your diagram.

210

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

C) Specify the address values that will select cell F.

D) How many row-select and column-select lines would be required
to address 1024 cells arranged in 16 rows and 64 columns.

Answers:

A) The truth tables are shown below:

211

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

B)

C) Cell F is selected when:

RS = 1; CS1 = 0; CS2 = 1

D) The number of rows/columns is given by:

Number of rows/columns = 2k

Where k = number of rows/columns select lines

So 16 rows = 24, which means 4 row select lines are required.

So 64 columns = 26, which means 6 column select lines are
required.

ROM
In Read-Only Memory (ROM), binary data is physically and permanently stored by
deforming the state of the memory cells. A set of input signals on the address

212

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

lines is decoded to access a given set of cells whose states then appear on the
output lines.

A typical 4x16 ROM is shown below:

The 64 bits of the 4x16 ROM are stored in 64 memory cells arranged in 2k = 22 = 4
words of 16 bits each available at the 16 output lines. The address is coded as a K-
bit binary number; a decoder translates the coded address and specifies one of
the 2k words. On the 2x4 decoder shown below, the address xy = 10 yields a 1 at
D2 (xy) and specifies that word 2 is to be read, that is, connected to the 16 output
lines.

213

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The function performed can be described as follows: (1) If the input is an address
and the output is a word (data or instructions) stored, we have a “memory”. (2) If
the input is data coded in one form and the output is the same data coded in
another form we have a “code converter”. (3) If the input is a set of binary
variables (a binary function) and the output is a related binary function we have a
“combinational logic circuit” that can replace a network of logic gates.

There are three types of read only memory; mask-programmable (ROM),
programmable (PROM), and erasable programmable (EPROM). The masked-
programmed ROM’s are programmed during manufacturing. A PROM device
initially contains all 0’s; the user programs the unit by electrically changing
appropriate 0s and 1s. This is an irreversible process. EPROMs can be
programmed and erased repeatedly. EPROMs can be erased by shining and
ultraviolet light into a window at the top of the device.

The same bipolar and MOS technologies are used in IC ROM as in RAM. In general
ROM is simpler since fewer control elements are necessary and no provision is
made for changing cell states.

Example
Show how a ROM can be used to realize:

A) The multiplexer discussed earlier, 4:1 MUX

B) The decoder discussed earlier, 2:4 DEC

Answers:

A) For each combination of values at the E, I0, E1, I2, I3, S1, and S0
inputs, the output is to be 0 or 1. If each input combination is
considered as an “address”, a ROM can store all possible outputs.
For these 7 inputs, a 27 = 128x1 ROM is needed. A few
representative lines of the truth table are given below.

214

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Connect E, I0, E1, I2, I3, S1, and S0 to the address inputs as shown
below.

B) For this case 32 bits of ROM (8x4) are needed. Connect E, S1 and
S0 to the address lines, and the 4 output lines to the destination
(Q0, Q1, Q2, Q3). The outputs will all be 0 whenever E=0. The truth
table for the decoder as given before is reproduced here:

215

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Connect E, S1 and S0 to the address lines as shown below:

216

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Finite State Machines
Finite state machine are so named because the sequential logic that implements
them can be in only a finite number of possible states. The counters discussed
earlier are simple finite state machines. Their outputs and states are identified,
and there is no choice of the sequence of counting.

In the more generalized case, the outputs and next state of the finite state
machine are combinational logic functions of their inputs and present state. Finite
state machines are essential for realizing the control and decision-making logic in
digital systems.

In designing finite state machines a rigorous synchronous design methodology will
be followed. This means that the state changes will be toggled with a global
reference signal, the clock. State time is defined as the time between related
clocking events.

Finite State Machine Design Procedure
A general design procedure for arbitrary finite state machines is given below.

1) Understand the problem. A finite state machine is often described by a
written specification of its behavior. Some input sequences should be tried
to help understand the conditions under which the various outputs are
generated.
Outcome: Descriptive block diagram

2) Obtain an abstract representation of the FSM. Put the problem in a form
that is easy to manipulate by known procedures (e.g.: draw a state
diagram).
Outcome: Initial State Diagram

3) Perform state minimization. The abstract representation after has too
many states. Some states may be eliminated to simplify the problem.
Outcome: Simplified State Diagram & Symbolic State Transition Table

217

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

4) Perform state assignment. Outputs are derived from present and past

states and a good choice of how to encode the state after leads to a simple
implementation.
Outcome: Encoded State & Transition Table

5) Choose flip-flop types for implementing the FSM’s state. JK flip-flops tend
to reduce gate count but have more connections. D flip-flops simplify the
connection process.

6) Implement the finite state machine. Using Boolean equations or K-maps for
the next state and output combinational functions produce the minimized
two-level or multilevel implementations.
Outcome: Remapped state transition Table (using excitation table of flip-
flops), K-maps for flip-flop inputs & FSM output, Circuit Synthesis

Example: A Simple Vending Machine
Implement a simple finite state machine that controls a vending
machine.

The control works as follows: The vending machine delivers a
package of gum after it has received 15 cents in coins. The machine
has a single coin slot that accepts nickels and dimes, one coin at a
time. A mechanical sensor indicates to the control whether a dime or
a nickel has been inserted into the coin slot. The controller’s output
causes a single package of gum to be released down a chute to the
machine is to be designed so it does not give change. A customer
who uses two dimes losses 5 cents.

1) Draw a block diagram to understand the inputs and outputs. In
the figure below N is asserted for one clock period when a nickel
is inserted into the coin slot:

218

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

D is asserted when a dime has been deposited. The machine
asserts Open for one clock period when 15 cents (or more) has
been deposited since the last reset. It will be assumed that the
coin sensor returns any coin not recognized, leaving N and D
unasserted, and that extreme logic resets the machine after the
gum is delivered.

2) A more suitable abstract representation is obtained by
enumerating the possible unique sequences of inputs or
configurations of the system. For this case gum is released for the
input sequences:

• Three nickels in sequence: N, N, N

• Two nickels followed by a dime: N, N, D

• A nickeled followed by a dime: N, D

• A dime followed by a nickel: D, N

• Two dimes in sequence: D, D

This can be represented as a state diagram as shown below.

219

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

To keep the state diagram simple only transitions that explicitly
cause a state change are concluded. Also Open is shown only in
states where it is asserted.

3) This nine-state description is not the best. Since states S4, S5, S6,
S6, and S8 have identical behavior they can be combined into a
single state.

A further reduction can be obtained if we think of each state as
representing the amount of money received so far. The state
diagram derived in this way is shown below. Note that only four
states are required:

220

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Techniques are available for minimizing the number of states. We
now have a finite state machine with a minimum number of
states. The symbolic state transition table is shown below. Note
we assume that N and D are never asserted at the same time.

4) Next the states must be encoded. A natural state assignment
would encode the states in 2 bits: state 0₵ as 00, state 5₵ as 01,
state 10₵ as 10 and state 15₵ as 11. The encoded state transition
table is shown below. A number of computer-based tools are
available for funding an effective state encoding.

221

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

222

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

5) Implementation based on both D and JK flip-flops will be
considered.

6) The K-maps for the D flip-flops implementation are shown below.
These maps are obtained directly from the encoded state
transition table.

223

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

From the K-maps we obtain the following minimized equations:

The logic circuit is shown below. It uses eight gates and two flip-flops.

224

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

To implement using JK flip-flops the next-state functions must be
remapped. We start with the JK excitation table as shown below:

The remapped state transition table is shown below.

225

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

The remapped K-maps for the JK implementation are given below.

226

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Using these K-maps we obtain the minimized functions:

The implementation is shown below, it requires six gates and two
flip-flops. This is a slight improvement over the D flip-flop case.

227

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Moore and Mealy Machines
The most general form of a sequential circuit has inputs, outputs, and internal
states. It is customary to distinguish between two types of sequential circuits: the
Moore machine and the Mealy machine.

The Moor Machine
In the Moore machine, the outputs are a function of the present state only. An
example of a Moore machine is shown below.

The circuit can be specified by the following input functions:

228

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

We see that the outputs are taken from the flip-flops and are a function of the
present state only. The outputs change synchronously with the state transition
and the clock edge. The finite state machine we have considered so far are Moore
machines.

For the given system we can use the JK excitation table to find the state table and
state transition diagram.

The state transition table is given below:

The state transition diagram is shown below:

229

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Note that since the directed lines are marked with a single binary digit without a
slash, there is one input variable and no output variables. The state of the flip-
flops may be considered the outputs of the circuit.

The Mealy Machine
In the Mealy machine, the outputs are functions of both the present state and
inputs. An example of a Mealy machine is shown below. The circuit has one input
x, one output y, and two D flip-flops A and B. The logic diagram can be expressed
algebraically with two flip-flop input functions and one output circuit function:

230

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

We see that the output Y is a function of both input X and the present state of A
and B. The outputs can change immediately after a change at the inputs,
independent of the clock. A Mealy machine constructed in this fashion has
asynchronous outputs.

For the given system we can use the D excitation table to find the state table and
the state transition diagram.

231

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Note that D=Q+

The state transition table is given below:

The state transition diagram is shown below:

232

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Note that the labeling on the directed lines indicate the input and output
variables (i.e.: i/o = input/output).

An example where we obtain the circuit diagram gives the state transition
diagram, inputs and outputs is given below.

Example:
A sequential circuit has three flip-flops, A, B, C; one input, x; and one
output, y. The state diagram is shown below. The circuit is to be
designed by treating the unused states as don’t care conditions.
Check the final circuit to ensure that it is self-starting. Use JK flip-
flops in the design.

From the given diagram and the excitation table for JK flip-flops we
can obtain the state table as given below.

233

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

From the above table we can obtain the K-maps:

234

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Using the K-maps we obtain the minimized functions:

The implementation is shown below:

235

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

Note that the shorthand notation is used in the above diagram so
that leads with the same label are connected together.

Since the state 101, 110, and 111 are not used the circuit must be
checked to ensure that it is self-starting. To check we see what the
don’t cares become in the K-maps. The results are shown by the

236

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University

numbers next to the X’s and the state transition table. The complete
state transition diagram is shown below.

We see from the last diagram that the system is self-starting.

Alternative State Machine Representations
State diagrams do not adequately capture the notion of an algorithm and are
ineffective at capturing the structure behind complex sequencing. As a result
hardware designers have shifted toward using alternative representations of FSM
behavior that resemble software descriptions. The following alternate
representations are being used:

A) Algorithmic state machine (ASM) notation, which is similar to program
flowcharts but has a more rigorous concept of timing

B) Hardware Description Languages (HDLs), which look like programming
languages, but they explicitly support parallel computations.

	Digital Circuits
	Truth Table
	Typical Response
	OR Gate
	Symbol
	Truth Table
	Typical Response

	NOT Gate
	Symbol
	Truth Table
	Typical Response

	NOR Gate
	Symbol
	Truth Table
	Typical Response

	NAND Gates
	Symbol
	Truth Table
	Typical Response
	Example:

	XOR Gate
	Symbol
	Truth Table

	X NOR Gate
	Symbol
	Truth Table

	Additional Gates
	Electric Switches
	Diodes
	Transistors
	Bipolar
	Metal Oxide Semiconductor

	Logic Classifications
	Signal Degradation:
	Fan-In:
	Fan-Out:
	Speed:
	Noise Margin:
	TTL Packaged Logic:

	The Breadboard

	Number Systems
	Binary Numbers
	Number Conversion
	Binary to Decimal Conversion
	Example

	Decimal to Binary Conversion
	Example

	Binary Arithmetic
	Binary Addition
	Examples

	Binary Subtraction
	Example:

	Binary Multiplication
	Example

	Binary Division
	Example

	Bits, Bytes and Words
	Other Notations
	Octal Number System
	Example
	Example

	Hexadecimal Numbering System
	Example
	Example

	Signed Magnitudes
	Complements
	Radix Complement
	Example

	Two’s Complement Arithmetic
	Addition
	Subtraction
	Example

	Binary Coded Decimal

	Boolean Algebra
	Boolean Theorems
	Boolean Postulates in 0 and 1
	Basic Boolean Identities
	Example:
	Example

	De Morgan’s Theorems
	Example

	Logic Circuit Analysis
	Example

	Two-Level Combinational Logic

	Logic Circuit Synthesis
	Adding
	The Half Adder
	The Full Adder

	Subtraction
	Direct Approach
	Indirect Approach (Using Adders)

	Arithmetic Logic Unit (ALU)
	A Design Procedure
	Example

	Two-Level Canonical Forms
	Sum of Products
	Product of Sums
	Conversion Between Canonical Forms
	Positive Versus Negative Logic

	Minimization by Mapping
	Karnaugh Maps (K-Maps)
	Example
	Example

	Mapping in Four Variables
	Example
	Example

	Five-Variable Maps
	Example

	Comments on Maps
	Example of Points 4&5:
	Example

	Some More Notes: Implicants
	Example

	Multilevel Combinational Logic
	Conversion to NAND and NOR Networks
	Example
	Example

	Computer Aided Design Tools
	Time Response in Combination Networks
	Gate Delays
	A gate delay is the amount of time it takes for a change at the gate input to cause a change at the output. Various families of TTL have trade-offs between delay and power. The faster a component, the more power it consumes. Propagation delays often d...
	Timing Waveforms

	Hazards and Glitches
	Notes
	Hazards in Multilevel Networks
	Example

	Programmable and Steering Logic
	PAL’s and PLA’s
	The Difference Between PLA’s and PAL’s
	Example: BCD-to-Gray-Code Converter

	Design Procedure
	Example: BCD-to-7-Segment Display Converter

	Beyond Simple Logic Gates
	Switching Logic
	Multiplexer/Data Selector
	Example:

	Multiplexer as a Logic Building Block
	Decoders/Demultiplexer/Data Distribution
	Decoder/Demultiplexer as a Logic Building Block

	Tri-State Gates

	Sequential Logic Design
	Logic Gate Memory Units
	Inverter Chains
	Cross-Coupled NOR Gates
	Timing Waveforms
	The Data Latch
	Example

	The D Flip-Flops
	Timing
	The JK-Flip Flop
	Example:
	Example

	The T Flip-Flop
	Conversion of One Flip-Flop Type to Another
	Example: JK with D
	Example: D with JK
	Example: RS from JK
	Example: JK from RS

	Practical Matters
	Debouncing Switches
	The 555 Timer
	Example:

	Sequential Logic Applications
	Registers
	Shift Registers

	A Practical Register

	Counters
	Types of Counters
	Divide-by-n Circuits
	Binary Ripple Counter
	Example

	Decade Counters
	Example

	Synchronous Counters
	Ring Counters

	Counter Design Procedure
	Example: Generalized Counter Design

	Self-Starting Counters
	Verifying if a Counter is Self-Starting
	Example

	Counter Reset

	Implementation with Different Kinds of Flip-Flops
	Example Implementation with RS Flip-Flops
	Example Implementation with JK Flip-Flops
	Example Implementation with D Flip-Flops
	Comparison & Summary of Different Implementations
	Example

	Memory
	RAM
	Example

	ROM
	Example

	Finite State Machines
	Finite State Machine Design Procedure
	Example: A Simple Vending Machine

	Moore and Mealy Machines
	The Moor Machine
	The Mealy Machine
	Example:

	Alternative State Machine Representations

