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Digital Circuits 
Digital Circuits have inputs and outputs that are represented by discrete values. 
The figure below shows a typical output for a digital circuit. 

 

There are two possible output values, namely ±5 volts. Two distinct voltage levels 
separated by a forbidden region electronically represent the binary numbers 1 
and 0. 
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In analog circuits the inputs and outputs have continuous values as show 
below: 

 

Analog waveform more realistically represent physical quantities such as sound 
and temperature. Digital waveforms only approximate real values if there are 
many discrete values. Digital waveforms, however, can best represent degraded 
signals. 

Logic Gates 
A gate is a device that controls the flow of information, usually in the form 

of pulses. Each logic operation will be indicated by a symbol whose function is 
defined by a truth table that shows all possible inputs and the corresponding 
outputs. 

AND Gate 

Symbol 

 

A ● B is read “A and B”. 
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Truth Table 

 

An output appears only when there are inputs at A and B. In general, 
there may be several input terminals. 

Typical Response 
A typical response for two inputs varying with time is shown below: 

 

OR Gate 

Symbol 
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A + B is read “A or B”. 

Truth Table 

 

Typical Response 
A typical response for two inputs varying with time is shown below: 

 

NOT Gate 
Signal inversion corresponds to a logic NOT. 

Symbol 
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A is read “not A”. 

Truth Table 

 

The NOT element is an inverter; the output is the complement of the 
signal input. 

Typical Response 

 

NOR Gate 
An inverted OR gate results in a NOT OR or NOR operation. 

Symbol 
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The small circle at the output of the gate, and the line over A + B 
indicate the inversion process. Thus A+B is A+B inverted. 

Truth Table 

 

Typical Response 

 

All basic logic operations can be achieved by using only NOR gates. 

NAND Gates 
An inverted AND gate results in a NOT AND or NAND operation. A NAND gate has 
all the advantages of a NOR gate and is very easy to fabricate. In a complex logic 
system, it is convenient to use one type of gate, even when simpler types would 
be satisfactory, so that gate characteristics are the same for the whole system. 
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Symbol 

 

The small circle and the line over A ● B indicate inversion. 

Truth Table 

 

Typical Response 
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Three NAND gates can be used to replace an OR gate. The 
combination of NAND gates is equivalent to an OR gate in that it 
performs the same logic operation (see example below). 

Example: 
Use NAND gates to form a two-input OR gate. 

The desired function is defined by the following truth table: 

 

From the table we see that if each input were inverted (replaced by 
its complement) the NAND gate would produce the desired result as 
indicated in the table. 

To obtain the inversion, tie both terminals of a NAND gate together 
as shown below. 

 

In digital notation, the function f is defined by: 
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 A•B A+Bf = =  

This relation was obtained by comparing the desired and available 
truth tables. A “digital algebra” for direct manipulation of such 
expressions will be considered later. 

XOR Gate 
As indicated by the truth tables, the Exclusive-OR operation can be expressed as 
(A+B) • (A•B)which reads “(A or B) and not (A and B)”. The alternate form
A•B + A•B is called an inequality comparator since it provides an output of one if A 
and B are not equal. 

Symbol 

 

Truth Table 

 

One realization of this gate is shown below: 
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X NOR Gate 
The exclusive-NOR operator can be expressed as (see the truth tables) A•B+A•B . 

It is the inverse of the inequality comparator A•B + A•B . This is an “equality 
comparator” since the output is 1 if A and B are equal. 

Symbol 

 

Truth Table 

 

One realization of this gate is shown below: 
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Additional Gates 
The following truth table shows all possible gates. This is based on writing out all 
possible variations of the truth table, with names for some of those gates given: 

 

Electric Switches 

Diodes 
A diode is a two-terminal electrical device that allows current to flow in one 
direction but not the other. A schematic diagram from a diode is shown below. 
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If the anode is at a higher voltage than the cathode, the diode is forward biased, 
its resistance is very low, and current flows. The diode has voltage drop of about 
0.7V across it. If the anode is at a lower voltage than the cathode, the diode is 
reverse biased, its resistance is very high, and no current flows. 

Simple gates can be constructed by using diodes and a resistor. An AND gate is 
shown below: 

 

If the inputs are positive (> +5V) with respect to ground, inputs at A and B turn off 
both diodes, no current flows through R and there is a positive output (a 1). In 
general, there may be several input terminals. If any of those inputs are zero (0), 
current flows through the forward-biased diode, and the output is nearly zero (0). 

An OR gate is shown below: 
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For no input (zero voltage) no current flows and the output is zero (0). An input of 
+5V (1) at either terminal A or B on both (or on any terminal in the general case) 
forward biases the corresponding diode, current flows through the resistor, and 
the output voltage rises to nearly 5V (1). 

The voltage drop across the diodes add up when circuits of this type are cascaded 
in series and the voltage levels are degraded. Note that it is not possible to 
construct and inverter using only diodes and resistors. Transistors can be used to 
circumvent these problems. 

Transistors 

Bipolar 
A bipolar transistor is a three-terminal semiconductor device. Under 
control of one of the terminals, called the base, current can below 
from the collector terminal to the emitter terminal. 

The basic inverter circuit is shown below. 
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A high voltage at the base turns on the transistor. The output f is 
discharged to ground, getting close to 0V (but never quite reaching 
it). When a low voltage is placed on the base, the transistor is turned 
off. The output node f voltage approaches the power supply voltage 
Vcc through the pull-up/load resistor R1. 

Metal Oxide Semiconductor 
A Metal Oxide Semiconductor (MOS) transistor is a voltage-
controlled switch. It has three terminals: a source, a drain, and a 
gate. There are two different types of MOS transistors, called nmos 
and pmos. Their schematic symbols are shown below: 

 

An nmos transistor conducts when a high voltage (1) is placed on its 
gate, and is non-conducting when a zero voltage (0) is on the gate. 
The pmos transistor is complementary. A pmos transistor conducts 
when a logic 0 is placed on the gate, and is non-conducting when a 
logic 1 is on the gate. 
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Diodes, transistors, and resistors can be used to implement a wide range of gates. 

Logic Classifications 
Electronic logic circuits are classified in terms of the components employed. Basic 
operations can be performed by: 

1. Diode Logic (DL) 
2. Resistor-Transistor Logic (RTL) 
3. Diode-Transistor Logic (DTL) 
4. Transistor-Transistor Logic (TTL) 
5. Metal-Oxide Semiconductor (MOS) 
6. Complementary MOS (CMOS) 
7. Emitter-Coupled Logic (ECL) 

Logic types vary in (a) signal degradation (b) fan-in (c) fan-out and (d) speed. 

Signal Degradation: 
As mentioned earlier, a disadvantage of diode logic is that the 
forward voltage drops is appreciable, and the output signal is 
degraded. The use of transistors minimizes degradation. 

Fan-In: 
The number of inputs that can be accepted is called fin-in. It is low (3 
or 4) for DL and high (8 or 10) for TTL. 

Fan-Out: 
The number of outputs that can be supplied by a logic element is 
called the fan-out. Fan-out depends on the output current capacitor 
(and the input current requirement) and varies from 4 in DL to 10 or 
more in TTL. 

Speed: 
The speed of a logic operation depends on the time required to 
change the voltage levels, which is determined by the effective time 
constant of the element. In high speed diodes, the charge storage is 
so low that response is limited primarily by wiring and lead 
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capacitance. In transistors in the ON stat, base current is high and the 
charge stored in the base region is high. This charge must be 
removed before the collector bias can reverse. Typically, 5 to 10 nS 
are required to process a signal. In ECL, the charge stored is minimal 
and ECL gates can operate at rates up to 200 MHz. 

Noise Margin: 
The difference between the operating input voltage and the 
threshold voltage is called the noise margin. 

TTL Packaged Logic: 
Integrated Circuits containing few than a dozen gates are small-scale 
integration (SSI); those with more than a hundred elements are 
large-scaled integration (LSI). In between are medium-scale 
integration (MSI) circuits. A TTL integrated circuit package typically 
contains several simple logic gates. The Texas Instruments (TI) 74-
series components provide the standard number scheme used by the 
industry. For example, a package containing four 2-input NAND gates 
is a “7400” while a “7404” contains six inverters. A 14-pin package 
along with a diagram of its internal logic and pin connectivity is 
shown below. 

 

Another interpretation: 
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The Breadboard 
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Number Systems 
To design efficient digital circuits, we need a special numbering system and a 
special algebra. We will now consider the binary number system and apply logic 
to binary relations. 

Binary Numbers 
A number N can be written as a polynomial of the form: 

1 2 1 0 1
1 2 1 0 1

1

... ...n n m
n n m

n
i

i
i m

N b r b r b r b r b r b r

b r

− − − −
− − − −

−

=−

= + + + + + + +

= ∑  

Where: 

 r = base or radius of the system 

 bi = ith bit (digit) 

 bn-1 = most significant bit (digit) MSB 

 b-m = least significant bit (digit) LSB 

n = number of integer bits (digits) 

m = number of fraction bits (digits) 

and 

 0 1 for all i, 1ib r m i n≤ ≤ − − ≤ ≤ −  

In the decimal system a quantity is represented by the value and the position of a 
digit. For example, the number 503.14 can be written as: 
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We see that 10 is the base and each position to the left or right of the decimal 
point corresponds to a power of 10. 

For data with only two possibilities such as the ON-OFF position of a switch which 
can be represented by the number 0 or 1, we use the binary system. In this 
system the base is 2. For example the number 10 can be written as: 

 

In electronics 1 and 0 usually correspond to the specified voltage levels e.g.: in 
TTL, 0 corresponds to a voltage near zero and 1 to a voltage near +5V. 

Number Conversion 

Binary to Decimal Conversion 
In a binary number, each position to the right or left of the “binary point” 
corresponds to a power of 2, and each power of 2 has a decimal equivalent. 

To convert a binary number to its decimal equivalent, add the decimal equivalents 
of each position occupied by a 1. 

Example 
Write in decimal the following numbers: 
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Decimal to Binary Conversion 
A decimal number can be converted to its binary equivalent by expressing the 
decimal number as a sum of powers of 2. A more convenient method is the 
double-dabble method of handling integers and decimals separately. 

To convert a decimal integer to its binary equivalent, progressively divide the 
decimal number by 2, noting the remainders; the remainder taken in reverse 
order forms the binary equivalent. 

To convert a decimal fraction to its binary equivalent, progressively multiply the 
fraction by 2, removing and noting the carries; the carries taken in forward order 
from the binary equivalent. 

Example 
Convert decimal 28.375 and 0.625 to their binary equivalent.  

A) Using the shorthand notation for the double-dabble method: 

 

The binary equivalent is 11100.  

Then convert the fraction: 
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The binary equivalent is .011 

Hence, 28.375 is equivalent to binary 11100.011: 

B) 

 

The binary equivalent is 0.101. 

Binary Arithmetic 

Binary Addition 
Add column by column carrying where necessary into higher position columns. 

Examples 
A) Perform 1110 + 1011 

B) Perform 0110.110 + 0110.011 

Results: 

A) 
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Check your results: 

 

The binary equivalent is 11001 which checks OK. 

B) 

 

The binary equivalent is: 
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1101.001 is the binary equivalent of 13.125, which checks OK. 

Binary Subtraction 
Subtract column by column borrowing where necessary from higher position 
columns. 

 Example: 
Perform the following binary subtractions: 

A) 1101.011 – 101.101 

B) 1010 – 1101 

Answers: 

A) 

 

Check: 
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Hence 10.110 is the binary equivalent to 2.75, so this answer checks 
out OK. 

B) 

 

Check: 

 

Hence, -11 is the binary equivalent of -3, so the answer checks out. 

Binary Multiplication 
Obtain partial products using the binary multiplication table: 
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 0 x 0 = 0 

 0 x 1 = 0 

 1 x 0 = 0 

 1 x 1 = 1 

and then add the partial products. The binary point is handled in the same way a 
decimal point would be when multiplying. 

Example 
Perform the following binary multiplication: 1110.1 x 1.01. Check by 
converting from binary to decimal and multiplying. 

 

Check: 
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This shows that 10010.001 is the binary equivalent of 18.125, so the 
multiplication checks OK. 

Binary Division 
Perform repeated subtractions as in long division of decimals. 

Example 
Perform the following binary division: 10011.01 ÷ 11.1 . Check by 
converting from binary to decimal and then dividing. 
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Hence, 101.1 is the binary equivalent of 5.5, which checks out OK. 
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Bits, Bytes and Words 
A single binary digit is called a “bit”. All information in a digital system is 
represented by a bit. 

 4 bit sequence is a nibble 

 8 bit sequence is a byte 

 16 bit sequence is a word 

The number of bits in the data sequence processed by a computer is an important 
characteristic. An 8 bit microprocessor can receive, store, and transmit data or 
instructions in the form of bytes. Eight bits can be arranged in 28 = 256 different 
combinations, thus a byte can have 256 values. 

Other Notations 
The number of years in a century can be written as 100D or 10010 in the decimal 
system. In binary notation this would be written 01100100B or 011001002 ; the 
suffix B or subscript 2 is used wherever necessary to avoid confusion. 

Octal Number System 
The octal number system is a base 8 system and so has eight distinct digits {0, 1, 
2, 3, 4, 5, 6, 7 }. It is expressed as a string of any combination of the eight digits. 
To convert from octal to decimal, we follow the same procedure for converting 
from binary to decimal; that is, express the octal number in its polynomial form 
and evaluate this polynomial by using decimal-system addition. 

Example 
Convert the number 367.2408 to its decimal equivalent. 
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To convert from decimal to octal we use the same procedure as converting from 
decimal to binary, but instead of diving by 2 for the integer part, divide by 8 to 
obtain the octal equivalent. Also, instead of multiplying by 2 for the fractional 
part, multiply by 8 to obtain the fractional octal equivalent of the decimal system. 
However, it is more common to convert from binary to octal and vice-versa.  

The conversion from binary to octal is accomplished by grouping the binary 
numbers into groups of 3 bits each, starting from the binary point and proceeding 
to the right and to the left. Each group is then replaced by its octal equivalent. 

Example 
Convert 011001002 into its octal equivalent. 

Grouping the bits into groups of 3 bits from the binary point we get: 

001 100 100 

Note that a leading zero was added to complete the first group. Each 
group is now replaced by its octal equivalent to get: 

 001 100 100 

              1      4      4 

Thus, 

   011001002 = 144 O = 1448 

The three-bit octal numbers are easier to work with than their 8-bit binary 
equivalents. 
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To convert from octal to binary replace each octal digital by its 3-bit binary 
equivalent. 

Hexadecimal Numbering System 
The hexadecimal numbering system is a base-16 system and has sixteen distinct 
digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} where A is the equivalent of 
decimal 10, B to 11, …, and F to 15. A hexadecimal number is expressed as a string 
of any combination of the 16 symbols. To convert from hexadecimal to decimal 
and vice versa we follow the same procedure for conversion between decimal 
and octal, except we now use 16 instead of 8. 

Example 
Convert the number 2AB.F816 to its decimal equivalent. 

 

 

To convert from binary to hexadecimal group the binary numbers into 4 bits each; 
starting from the binary point and proceeding to the right and to the left and then 
replace each group by its hexadecimal equivalent. 

Example 
Convert the following into their hexadecimal equivalents. 

A) 11000011.012 

B) 011001002 

Results: 
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A) Group the bits into groups of 4 bits from the binary point and 
replace each group by its hexadecimal equivalent: 

 

Thus 11000011.012 = C3.416. 

B)  

 

Thus 011001002 = 64H = 6416. 

To convert from hexadecimal to binary replace each hexadecimal digit by its 4-bit 
binary equivalent. A table of the four number systems is given below: 
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Signed Magnitudes 
In binary notation, an n-bit data word can represent the first 2n non-negative 
integers. To allow for both positive and negative numbers, the most significant bit 
(MSB) can be designated as the sign bit (0 for positive numbers, 1 for negative 
numbers). The lower order bits then represent the magnitude of the number in 
binary notation. 

The figure below shoes a “number where” representation of a 4-bit number 
system. The figure shows the binary numbers and their decimal integer 
equivalents, assuming that the numbers are interpreted as sign and magnitude. 
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The largest positive number that can be represented in three data bits is +7 = 23 – 
1. Similar the smallest negative number is -7. 

 

This method has the following disadvantages: 

• The number zero has two different representations 
• Two different arithmetic circuits are required to process positive and 

negative numbers, see the following straight-binary example giving 
incorrect answers: 

 

Complements 
A better notation for computers is based on the fact that adding the complement 
of a number is equivalent to subtracting the number. Hence instead of performing 
A-B using a subtractor, we can perform A + (-B) to obtain the same result using an 
adder. 

For each base r system, there are two types of complements, namely, the radix 
complement, also known as the r’s complement, and the diminished radix 
complement, also known as the (r-1)’s complement. 
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Radix Complement 
The radix complement, denoted by [N]r , for a n-digital and r-base 
number (N)r is defined as follows: 

 

Example: 

A) Obtain the 2-digit 10’s complement of 15 and 24. 

B) Represent -15 and -24 in 8-bit signed 2’s complement notation. 

Answers: 

A) 1510 = 102 – 15 = 100 – 15 = 85 

2410 = 102 – 24 = 100 – 24 = 76 

B) In binary: 
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and: 

 

 

The 2’s complement of a binary number can be obtained directly from the given 
number of copying each bit of the number, starting at the lest significant bit, and 
proceeding towards the most significant bit until the first 1 has been copied. After 
the first 1 has been complied, replaced each of the remaining 0’s and 1’s by 1’s 
and 0’s respectively. 
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Example 
 

The 4-bit 2’s complement number representation is shown below. Note there is 
only one representation for zero. 

A) Represent -15 and -24 in 8-bit signed 2’s complement notation. 

 

Convert 1111 to 8-bit number: 

00001111 

Starting from left-hand side, invert each bit until the last ‘1’ is 
encountered: 

11110001 

 Therefore -15 is 11110001 in signed 2’s complement. 
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Again convert to 8-bit number: 

00011000 

Starting from left-hand side, invert each bit until the last ‘1’ is 
encountered: 

11101000 

 Therefore -24 is 11101000 in signed 2’s complement. 

The 4-bit 2’s complement number representation is shown below. Note there is 
only one representation for zero. 

 

Two’s Complement Arithmetic 

Addition 
Two n-bit signed binary numbers in 2’s complement format are 
added by performing a binary addition of the two numbers, including 
the sign bits. If a carryover bit results from the leftmost bit, it is 
discarded. The leftmost bit of the result will give the sign of the sum. 

If the sign bit is a 1 we must take the 2’s complement of the result to 
get the real magnitude of the final answer. 
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Subtraction 
In 2’s complement format subtraction of two signed numbers is 
performed by adding the 2’s complement of the subtractand to the 
numerand. If a carryover results from the leftmost bit, it is discarded. 
Also the leftmost bit gives the sign of the difference. 

Note that the 10’s complement can be obtained by forming the 9’s 
complement and adding 1. The 2’s complement can be obtained by 
forming the 1’s complement ad adding 1. The 1’s complement is 
formed by changing 1’s to 0’s and 0’s to 1’s. The 1’s complements 
representation is shown below. Note the two representations of 
zero: 

 

Example 
Perform (A) 24-15 and (B) 15-24 directly and by complement 
notation. 

Answers: 

A) Direct 

 

10’s Complement 
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2’s Complement 

 

B) Direct 

 

10’s Complement 

 

2’s complement 
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Note that for the 10’s complement the carryover is discarded and 
if the result is negative the complement must be taken to get the 
final result. 

Binary Coded Decimal 
For convenience, computer input/output devices may accept/provide decimals on 
the human side and binaries on the computer side. In a binary-coded decimal 
number each of the decimal digital is coded in binary, using 4 bits. For example in 
the 8421 code 610 = 01102, 310 = 0112, and 363 = 0011 0110 0011 BCD. 

When a computer is to handle letters as well as numbers, the alphanumeric code 
is used. In the American Standard Code for Information Interchange (ASCII) seven 
bits are used to represent all the characters and punctuation marks on a 
teletypewriter keyboard plus some control signals. Note that 27 = 128 
combinations of 7 bits. An eighth bit, the MSB, is a parity bit used in error 
correction. In the even parity connection, the MSB is set so that the number of 1’s 
in each ASCII character is even, the present of an odd number of 1’s indicates an 
error. 
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Boolean Algebra 
Boolean algebra is useful in manipulating binary variables (0,1) in OR, AND, or 
NOT relations and in the analysis and design of all types of digital systems. 

Boolean Theorems 
The basic postulates are given in the tables below. In general, the inputs and 
outputs are variables (either 1 or 0). 

Boolean Postulates in 0 and 1 
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Basic Boolean Identities 
No. Identity Comments 
1 A+0=A  Operations with 0 

and 1 
2 A+1=1 Operations with 0 

and 1 
3 A+A=A  Idempotent 
4 A+A=1 Complements 
5 A 0=0•  Operations with 0 

and 1 
6 A 1=A•  Operations with 0 

and 1 
7 A A=A•  Idempotent 
8 A A=A•  Complements 
9 A=A   
10 A+B=B+A  Commutative 
11 A B=B A• •  Commutative 
12 A (B+C)=(A+B)+C=A+B+C+  Associative 
13 A (B C)=(A B) C=A B C• • • • • •  Associative 
14 A (B+C)=(A B)+(A C)• • •  Distributive 
15 A+(B C)=(A+B) (A+C)• •  Distributive 
16 A+(A B)=A•  Absorption 
17 A (A B)=A• +  Absorption 
18 (A B)+(A C)+(B C)=(A B)+(A C)• • • • •  Consensus 
19 A+B+C+...=A B C...• •  De Morgan 
20 A B C ...=A B C...• • • + +  De Morgan 
21 (A+B) B=A B• •  Simplification 
22 (A B) B=A B• + +  Simplification 

 

The validity of the 22 rules can be verified by substituting all possible values for 
the Boolean variables and evaluating the left and right-hand sides of each 
identity. This is known as a proof by perfect induction.  



50 
 

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University 
 

Example: 
Use proof by induction to verify the consensus identity: 

 

 

Note that when B●C=1, this means B=C=1. One of the remaining 
terms will always be 1 in that case, which is why B●C is redundant. 

The first nine identities are the fundamental relations of Boolean algebra. 
Identities 10-14 are similar to the laws of ordinary algebra. Identities 10 and 11 
are the commutative rules, 12 and 13 are the associative rules, and 14 and 16 are 
the distributive rules. Identities 16-18 do not apply to ordinary algebra but are 
very useful in Boolean Algebra. Identities 16 and 17 are the absorption identities; 
identity 18 is the consensus identity; identity 19 and 20 are De Morgan’s rules. 
Formally identities 21 and 22 are simplification rules. 

The basic identities can be used to simplify Boolean functions. 

Example 
Derive the absorption rule: 
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Using other basic theorems. 

 

De Morgan’s Theorems 
De Morgan’s theorems are easily interpreted in terms of logic circuits. The first 
says that a NOR gate is equivalent to an AND gate with NOT circuits in the inputs. 
The second says that a NAND gate is equivalent to an OR gate with NOT circuits in 
the inputs. As started by Shannon, De Morgan’s theorem says: 

To obtain the inverse of any Boolean function, invert all variables and 
replace all OR’s by AND’s and all AND’s by OR’s. 

Example 
Use De Morgan’s theorems to design a combination of NAND gates 
equivalent to a two-input OR gate. 

The desired function is: 
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Using De Morgan’s theorem (Identity 19) we get: 

 

Suggesting a NAND gate with NOT inputs because by 
theorem 7, a NAND gate with the inputs tied together performs the 
NOT operation. The logic circuit is shown below: 

 

Logic Circuit Analysis 
The Boolean identities permit us to manipulate logic statements or functions 
directly, without setting up truth tables. Also, the use of Boolean algebra can lead 
to simpler logic statements that are easier to implement. De Morgans theorems 
are useful in finding NAND operations that are equivalent to other operations. 

The analysis of a logic circuit consists in writing a logic statement expression the 
overall operation of the circuit. This can be done by starting at the input and 
tracking through the circuit noting the function realized at each output. The 
resulting expressions can be simplified or put into an alternate form by using 
Boolean Algebra. A truth table can be constructed. 

Note the symbol A●B can be simplified to AB or A(B). 

Example 
Analyze the given logic circuit: 
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Construct the truth table to demonstrate that this circuit could be 
replaced by a single NAND gate. 

The suboutputs are as noted on the diagram. The overall function 
can be simplified as follows: 

 

The truth table is given below: 
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Two-Level Combinational Logic 
A two-level implementation means that there are only two gates between input 
and output. A two-level implementation of f A B C D= • + •  is shown below: 

 

Each appearance of a variable or its complement is an expression is called a 
literal. Combinational networks are those where the outputs depend only on the 
current input. They are circuits without a memory. 
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Logic Circuit Synthesis 
The logic designer starts with a logic statement or truth table, converts the logic 
function into a convenient form and then realizes the desired functions by means 
of a standard or special logic Elements. 

Adding 

The Half Adder 
Consider the process of addition. In adding two binary digits, the possible sums 
are shown below. Note that when A=1 and B=1, the sum in the first column is 0 
and there is a carry of 1 to the next higher column. 

 

As indicated in the truth table, the half-adder must perform as follows: “s is 1 if A 
is 0 AND B is 1, OR if A is 1 AND B is 0; c is 1 if A AND B are 1”. In logic 
nomenclature, this becomes: 

 

Which can be written as: 
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Note that a full-adder can accept the carry from the adjacent column. 

To synthesize a half-adder circuit, start with the output and work backwards. The 
above equation indicates that the sum s is the output of an OR gate; the inputs 
are obtained from AND gates; inversion of A and B is necessary. The above 
expression also indicates that the carry c is the output of an AND gate. The logic 
circuit is shown below. 

 

Different Boolean expressional are possible for a given logic statement and some 
will lead to better circuit realizations than others. Consider the last expression: 
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And referring to the truth table we see that another interpretation is: 

“S is 1 if (A OR B) is 1 AND (A AND B) is NOT 1”. The binary addition is: 

 

The synthesis of the circuit, working backwards from the output, is shown below: 

 

The circuit is better than the previous one in that fewer logic elements are used 
and the longest path from input to output passes through fewer levels. 
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In terms of the Exclusive-OR gate, the half-adder takes the simple form shown 
below: 

 

The half adder can be treated as a discreet logic element and represented as 
shown below: 

 

The Full Adder 
To add two binary digits (bits) the half-adder performs the most elementary part. 
For a complete addition we need a fill-adder capable of handling the carry input 
as well. The addition process is illustrated below where ci is the carry from the 
proceeding column: 
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Each carry of 1 must be added to the two digits in the next column, so the logic 
circuit must be able to combine three inputs. The truth table for the full-adder is 
shown below. 

 

Note that both S and Co have four cases with 1’s in the output columns. In logic 
notation we have: 
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The expression for Co can be simplified as follows: 
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Although this leads to a simpler expression, applying the rules of Boolean algebra 
in this situation does not guarantee the simplest expression. A more systematic 
approach will be discussed later. 

Using the expression for S and Co the full adder can be implemented as shown 
below: 

 

The full adder can also be implanted with two half-adders and one OR gate, as 
shown below: 

 

For this case the S output from the second half-adder is the Exclusive-OR of Ci and 
the output of the first half-adder, giving: 
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as before. The carry out is the (Exclusive-OR of A and B AND Ci) OR’ed with A AND 
B, or: 

 

 

as before.  

The full adder can be treated as a discreet logic element and represent as shown 
below: 
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To obtain the binary addition of two n-bit binary numbers, we cascade n full-
adder circuits together, with the carry in of a full-adder being connected to the 
carry out of the previous full adder. The interconnection of four full-adders to 
provide the addition of two 4-bit binary numbers is shown below: 

 

Note that the initial adder need only be a half-adder since the initial Ci is 0. 

MSI (Medium Scale Integration) packages are available that contain 4 and 8-bit 
binary adders. 

Subtraction 

Direct Approach 
Subtraction can be implemented with logic circuits in a direct manner as was 
done for adders. In this method the subtractend is subtracted from the numerend 
to form the difference. If the numerend is smaller than the subtractend, a 1 is 
borrowed from the next significant position. This borrow must be conveyed to the 
next stage. As in the case of adders, there are half- and full-subtractors. 
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Indirect Approach (Using Adders) 
As discussed earlier, subtraction may be accomplished by taking the complement 
of the subtractend and adding it to the numerend. Subtraction then becomes 
addition requiring full-adders for machine implementation. The addition and 
subtraction operation can be combined into one circuit with the common binary 
adder. This is done by including an Exclusive-OR gate with each full adder as 
shown below. The mode input (M) controls the operation. When M=0, the circuits 
is an adder, and when M=1, the circuit becomes a subtractor. Each Exclusive-OR 
gate has input M and one of the inputs of B (Bi). 

 

When M=0, we have Bi XOR 0 = Bi. The full-adders receive the value Bi, the input 
carry is 0, and the circuit performs A+B. When M-1, we have Bi XOR 1 = NOT Bi, 
and the input carry is 1. The Bi inputs are all complemented and a 1 is added 
through the input carry. The circuit performs (A + NOT(B) + 1) which is A plus the 
2’s complements of B. Note that NOT(B) is actually the 1’s complement, but also 
called the “diminished 2’s complement”.  

Arithmetic Logic Unit (ALU) 
A arithmetic logic unit (ALU) is a combinational network of logic gates arranged to 
perform addition, complementing, incrementing, and the associated register for 
temporary storage of data or results. The ALU is governed by a control unit, which 
sets the various logic gates, feeds the numeric data, and provides the clock pulse 
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that regulates the speed of operation. An ALU and its control unit for an 
elementary example are shown below. 

 

In this case the stored number A and B are operated according to the instruction 
in the form of a 4-bit word. The instruction is taken from memory and placed in a 
register. The instruction 1011 shown sets the logic gates so that A, B, and 0 are 
available for processing. Other instructions and the outputs are shown in the 
table below. There are 24 = 2 x 32 possibilities. 

 

A Design Procedure 
In logic design, gates must be combined to realize the desired function. The 
design proceeds according to the following steps. 
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1. Statement of function 
2. Form a truth table 
3. Obtain the Boolean expression of the function 
4. Manipulate the Boolean expression to the simplest form 
5. Realize in terms of AND, OR and NOT gates 

Example 
For increased reliability on a spacecraft triple sensing systems are 
used; no action is taken unless at least two of those systems call for 
action. The required system is known as a vote taker whose truth 
table is shown below: 

 

Because the function is YES(1) only when a majority of inputs are YES, 
the Boolean expression is: 
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If the complement of each variable is available (true in most 
computers), the realization is a combination of four AND gates 
feeding an OR gate: 

 

If the complements are not available eight logic elements (three NOT 
elements) would be required, and simplification of the circuit is 
desirable. We proceed as follows: 
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This function requires only four logic elements as shown below: 
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Two-Level Canonical Forms 
A Boolean function can be written in different forms. Certain forms, however, 
lead to more desirable combinational networks. These forms which are canonical 
forms are of two types: sum of products and product of sums. 

Sum of Products 
We have used the sum of products form in our earlier work. A sum of products 
expression is formed as follows. Each row of the truth table in which the function 
takes on the value 1 contributes an ANDed term. These are called minterms. A 
minterm is defined as an ANDed product of literals in which each variable appears 
exactly once in either normal or complemented form, but not both. The minterms 
are then ORed to form the expression for the function. The minterm expression is 
equivalent since it is derived from the truth table. 

The figure below shows a truth table for an arbitrary function f and its 
complement. The minterms and maxterms for each row are also shown. The 
minterm expressions for f  and f NOT are: 

 

Truth table which above is based on: 
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The above expression can be written in a shorthand notation. Note that the 
indexing of the Boolean variables is important in deriving the minterm and 
maxterm. In shorthand notation we have: 

 

Where means the sum of all the minterms whose subscript i  is given 
inside the parentheses. 

The minterm expression is not likely to be the simplest form of the function. The 
expression for f  can be reduced by using Boolean algebra. 
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The minimized gate-level implementation of f is shown below: 

 

The expression f NOT can also be reduced: 
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Product of Sums 
A product of sums expressions is formed as follows. Each row of the truth table in 
which the function takes on the value 0 contributes an ORed therm. These are 
called maxterms. A maxterm is defined as an ORed sum of literals in which each 
variable appears exactly once in either true or completed form, but not both. The 
maxterms are then ANDed to form the expression for the function. This is 
opposite to the way we formed minterms. 

The products of sum of functions f and f NOT is obtained from the truth table as: 

 

Using a shorthand notation we can write f and f NOT as: 

 

Where means the product of all the maxterms whose subscript I is 
given inside the parentheses. 

Conversion Between Canonical Forms 
One canonical form can be mapped into the other by applying De Morgan’s 
Theorem. For example if we apply DeMorgan’s Theorem to the minterm 
expansion of f NOT we get: 
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Or: 

 

Which is the maxterm expansion of f. Similarly applying DeMorgan’s Theorem to 
them maxterm expansion of f NOT gives: 

 

Or using 19: 

 

Which is the maxterm expansion of f. 

The minimized product of sums form can be found by starting with the minimized 
sum of products form of f NOT and using DeMorgan’s Theorem. 
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Or using 20: 

 

The minimized gate-level implementation is shown below: 

 

Positive Versus Negative Logic 
So far, we have assumed that logic 1 is represented by a higher voltage than logic 
0. This is known as positive logic. If we use the low voltage to represent the 
asserted signal and the high voltage to represent the unasserted signal we have 
negative logic. 

Consider a truth table given in terms of high and low voltages: 
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In the positive logic case the truth table describes an AND function, whereas, in 
the negative logic case we obtain an OR function. This is to be expected since an 
AND function and an OR function are duals, by replacing 0’s in one truth table 
with 1’s in the other, and vice versa. 

Given a function is positive logic, the equivalent negative logic can be found by 
applying duality. For example the dual of the NOR function is the NAND function. 
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Minimization by Mapping 
The optimum form of a logic circuit is desired. The criteria is often ONE of the 
following: 

a) Maximum speed – fastest logic implementation 

Or: 

b) Minimum cost – fewest gate levels because the number of levels 
determines the cost of manufacturing and the cost of assembly. 

Or: 

c) Minimum design time – if only a few circuits are required  

Boolean algebra can be used to devise simpler logic expressions. If the truth table 
is available or if the logic function is expressed as a sum of products we can go 
directly to a minimum expression by a mapping technique from Maurice 
Karnaugh. 

Karnaugh Maps (K-Maps)  
The K-map of the general logic function of three variables is shown below. Each 
square in the map corresponds to one of the eight possible combinations of the 
three variables. The order of the columns is such that combinations in adjacent 
squares different only in the value of one variable. 
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We see that 2-square groups are independent of one variable. E.g.: for the groups 
circled: 

 

 

As shown above those relations are easily determined using Boolean algebra, but 
they are obvious by inspection of the K-maps. 

We can extend the groupings from adjacent squares as shown below where the 
labels are omitted from the squares. 

 

We see that 4-square groups are independent of the variables, e.g.: 
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Enlarging groups by overlapping simplifies the table. Note that the map is 
continuous, in that the last column on the right is “adjacent” to the first column in 
the left: 
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The standard labeling for K-maps (shown below) is convenient for mapping from 
the truth table. 
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Each square in the map corresponds to a row in the truth table. A specific logic 
function is mapping by placing a 1 in each square for which the function is 1. 
Possible simplifications are then easily recognized. 

Example 
Map the vote-taker function and simplify the circuit realization, if 
possible. From the truth table of the vote taker function: 

 

We first place 1’s in the squares corresponding to the tows in the 
truth table for which the result of the function is 1, resulting: 
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All the 1’s can be included in three overlapping 2-square groups. The 
complete function can be represented by: 

 

This is the simplest expression for the function. By using DeMorgan’s 
Theorem, any “sum of products” can be converted into a “NANDed 
product of NAND’s”. In this case: 

 

Which can be synthesized using NAND gates only: 

 

Example 
Map the full-adder sum and conjugate functions. Obtain the simplest 
forms of the function. The truth table is as follows: 
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Because there is two output functions, we have two separate K-
maps: 
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From the K-maps we see that the simplest form for the sum is given 
by: 

 

And the simplest form for the conjugate is given by: 

 

Both of these results agree with the earlier results. Note that the 
conjugate function is the same as the vote-taker function of the last 
example. 

Mapping in Four Variables 
K-maps are useful in simplification functions involving four variables. Typically 
once more than four variables are involved it becomes easier to use other 
techniques. A four-variable K-map is shown below: 
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As indicated in the figures below (where standard labeling for K-maps is used): 

• 2-square groups are independent of one variable 
• 4-square groups are independent of two variables 
• 8-square groups are independent of three variables 

Note that adjacent rows different by only one complement bar, and the bottom 
row is adjacent to the top row with the left column adjacent to the right. 
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The four corner squares for the groups . 

Some general guidelines for finding the minimal expression for a K-map are: 

a) Include all 1’s in groups of eight, four, two, or one. 
b) Groups may overlap; larger groups result in simpler terms 
c) Of the possible selection of terms, select the simplest 

Example 
Map the function: 

 

And obtain a minimum sum of products expression. 

Using DeMorgan’s theorem the given expression can be written as: 

 

The K-map is given below: 
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All the 1’s can be included in two 4-square and one 2-square groups. 
Thus: 

 

Note that the other expressions are possible but none with fewer, 
simpler terms. 

Example 
Map the function: 

 

And find the minimal sum of products form 

The K-Map is shown below: 

 

From the map we see that the minimum f is: 
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Again other arrangements are possible, but not minimal. 

Five-Variable Maps 
Maps for more than four variables are not as simple to use. A five-variable map 
needs 32 squares and a six-variable map needs 64 squares. With a large number 
of variables the number of squares is large and the geometry for combining 
adjacent squares is made convoluted. 

The five-variable map shown below consist of 2 four-variable maps with variables, 
A,B,C,D, and E. Variable A distinguishes between the two maps. The left-hand 
four-variable map represents the 16 squares where A=0, and the other four-
variable map represents the squares where A=1. Minterms 0 through 15 belong 
with A=0, and minterms 16 through 31 with A=1. Note that the numbering of the 
minterms is important. 

 

Each four-variable map retains the previously defined adjacency when taken 
separately. In addition, each square in the A-0 map is adjacent to the 
corresponding square in the A=1 maps. For example, minterm 4 is adjacent to 
minterm 20 and minterm 15 to 31. The best way to visualize this new adjacency 
rile is to cascade the two half maps as being one on top of the other. Any two 
squares that fall one over the other are considered adjacent: 
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Example 
Simplify the Boolean function: 

 

The filled in K-map is shown below, along with the simplified 
function: 
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Note the redundant agency has been omitted. 

By following the procedure used for the five variable maps, it is possible to 
construct a six-variable map using four of the 4-variable maps to obtain the 
required 64 squares. For maps with N variables one must check for adjacencies in 
N directions. Maps with six or more variables need too many squares and are 
impractical to use. It is simpler to use computer programs written to simplify 
Boolean functions with a large number of variables. 

Comments on Maps 
1. Two variable K-maps are shown below: 
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2. An N-Variable K-map has 2N cells. 

 
3. In some circuits, certain combinations of inputs never occur. These don’t 

care combinations map be mapped as X’s and considered as either 0’s or 
1’s, whichever provides the greatest simplification. 
 

4. In some circuits the simplest realization results from finding f NOT as the 
sum of products and then inverting the result to obtain f. 
 

5. The K-map can be used to find the minimum product of sums expression. In 
this case we collect the maximal adjacent group of 0’s and write the 
functions complement in the sum of product forms. Applying DeMorgan’s 
Theorem we get the product of sums form. 
 

Example of Points 4&5: 
Given the following K-Map: 
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Find f in the minimum product of sums form. 

From the map we see that: 

 

Therefor: 

 

Using DeMorgan’s Theorem we get: 
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Example 
Use K-maps to synthesize a 2-bit binary adder whose diagram and 
truth table are given below: 

 

The adder has two 2-bit binary numbers N1 and N2 as inputs and 
produces a 3-bit number, N3, as an output. In the truth table N1 is 
represented by the inputs A&B, and N2 by C&D. The output is 
represented by the Boolean function X,Y, and Z. 

The K-maps for the outputs are shown below. From the maps we can 
write the function X, Y, and Z: 
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The functions can be synthesized as shown below: 

 

Some More Notes: Implicants 
1) An implicant of a function f is a single or group of elements that can be 

combined together in a K-map. 
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2) A prime implicant is an implicant that cannot be combined with another 

one to eliminate a literal. 
 

3) If a particular element is covered by a single prime implicant, it is called an 
essential prime implicant. 
 

 

Example 
The logic box for a controller with inputs S2, S1, S0, C1, and C2 has to 
be designed using combinational logic gates. For the truth tables 
given below where B, I and R are outputs. Use the five variable K map 
procedure to draw the minimum circuit necessary to complete the 
table. 
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The resulting K-Maps are shown below: 
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From the K-maps we see that: 

 

The minimum circuit is shown below: 
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Multilevel Combinational Logic 
Consider the function: 

 

Which is in its numerical sum of products form. The corresponding logic circuit is 
shown below: 

 

We see that as a two-level network of AND and OR gates it requires six 3-input 
AND gates and one 7-input OR gate for a total of seven gates and 19 literals. 

We can replace the two-level form with a factored form as follows: 
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Or: 

 

The corresponding circuit is shown below: 

 

The result is a three (3) level network which requires one 3-input OR gate, two 2-
input OR gates, and a 3-input AND gate for a total of four gates and seven literals. 

We have reduced the number of wires and gates required but this 
implementation probably has more delay because of the increased levels of logic. 
In general, multilevel circuits are more gate efficient than the corresponding two-
level circuits but have worse propagation delay. 
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Conversion to NAND and NOR Networks  
The canonical forms studied so far are expressed in terms of AND and OR gates. In 
practice it is more efficient to use NAND and NOR gates. We will now see how to 
map a network with AND and OR gates into that consisting only of NAND or NOR 
gates. 

As can be seen from the truth tables below: 

i) An OR gate is logically equivalent to a NAND gate with its inputs inverted 
ii) A NAND gate is equivalent to an OR gate with its inputs inverted 
iii) An AND gate is equivalent to a NOR gate with its inputs inverted 
iv) A NOR gate is equivalent to an AND gate with its inputs inverted 

 

The graphic symbols for each gate are shown below: 

 

To obtain a multilevel NAND circuit from a Boolean expression, proceed as 
follows: 
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1. From the given Boolean expression, draw the logic diagram with AND, OR, 
and NOT inverter gates. Assume that both the normal and complement 
inputs are available. 
 

2. Convert all AND gates to NAND gates with AND-invert graphic symbols: 

 
3. Convert all OR gates to NAND gates with invert-OR graphic symbols: 

 
4. Check all small circles in the diagram. For every small circle that is not 

compensated by another small circle along the same long, insert an inerter 
(one-input NAND gate) or complement the input variable: 

 

Example 
Given the function: 
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Draw the logic diagram in the AND/OR form and convert to NAND 
logic. 

The AND/OR form is shown below: 

 

There are four levels of gates in the circuit. Using the procedure 
given earlier obtain the NAND diagram using two symbols: 
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Note that the literal B input to the second level NAND gate must be 
inverted to preserve the original sense of the signal. Since it does not 
matter whether we use AND-invert or the invert-OR symbols to 
represent a NAND gate, the diagram below is identical to the one 
above: 

 

 

To obtain a multilevel NOR circuit from a Boolean expression, proceed as 
follows: 
1. Draw the AND-OR logic diagram from the given algebraic expression. 

Assume that both the normal and complement inputs are available. 
 

2. Convert all OR gates to NOR gates with OR-invert graphic symbols: 

 
 
3. Convert all AND gates to NOR gates with invert-AND logic symbols: 

 
 
4. Any small circle that is not complemented by another small circle along 

the same line needs and inverter or the complementation of the input 
variables. 
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Example 
Convert the function f of the last example to NOR logic. 

Using the above procedure the AND/OR form is convert to the NOR 
diagram below: 
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Note the extra inversion required at the output. The final NOR only 
circuit is shown below: 

 

The inversion at the output has been implemented by a NOR gate 
with both inputs tied to the same signal. 
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Computer Aided Design Tools 
Computer-Aided Design (CAD) is used to speed up the high level design process. 
Besides allowing the exploration of design alternatives, design tools can improve 
the quality of the design by simulating an implementation before physical 
construction. Packages such as MIS-II developed at the University of California at 
Berkley are available for this purpose. 

NOTE: Since these notes were written a huge variety of newer tools are available. 
One of the more popular is Eagle (www.cadsoftusa.com) although it has more 
limited simulation support. Autotrax (www.kov.com) has fairly good simulation 
support and an easier user interface.  

http://www.cadsoftusa.com/
http://www.kov.com/
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Time Response in Combination Networks 
The propagation of signals through a network is not instantaneous. These delays 
may lead to logical errors at the outputs. Delays come from several sources: 

Gate Delays 

A gate delay is the amount of time it takes for a change at the gate input to 
cause a change at the output. Various families of TTL have trade-offs between 
delay and power. The faster a component, the more power it consumes. 
Propagation delays often depend on whether the output is going from a low to 
high (tLH) or from high to low (tHL). For example for the 7400 gate a typical tHL 

= 7nS and tLH = 11 nS. 
 

Timing Waveforms 
As an example of a timing waveform consider the circuit shown below: 

 

An input signal A passes through three inverters and is then ANDed with the 
original signal. This implements the function: 

 

This appears to be a useless function. However, examining the timing diagram 
below shows that after the input A goes high, the output goes high for a short 
time before going low. This circuit is called a pulse shaper. 
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To see how the circuit operations, assume that the initial state has A=0, B=1, C=0, 
D=1, and f=0 as shown at t=0. Further, assume that each gate has a propagation 
delay of 10 time units. When A changes from 0 to 1 at time 10, B does not change 
until time step 20, C at time step 30, and D at time step 40. We see that between 
time 10 and 40, both A and D are at logic 1. If the AND gate also has a 10-unit gate 
delay, the output f will be high between time stops 20 and 50. The pulse f is three 
inverter delays wide. To change the width, use a different number of inverters. 
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Hazards and Glitches 
A glitch is an unintended pulse at the output of a combinational logic network. A 
circuit with the potential for a glitch is said to have a hazard. 

The circuit below demonstrates the occurrence of a hazard. Assume that all inputs 
are initially 1. The output of gate 1 will then be 1, that of gate 2 will be 0, and the 
output of the circuit will be 1.  

 

Let B change from 1 to 0. The output of gate 1 changes to 0 and that of gate 2 
changes to 1, leaving the output at 1. The output may momentarily go to 0 if the 
delay through the inverter is large enough. The delay may cause the output of 
gate 1 to change to 0 before the output of gate 2 changes to 1. In this case both 
inputs to gate 3 are momentarily equal to 0, causing the output to go to 0 for a 
short time. 

The figure below is a NAND implementation of the same Boolean function. It has 
a hazard for the same reason: 
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When B changes from 1 to 0, both inputs of gate 3 may equal 1, causing a 
momentary change to 0 in the output. 

The circuits above implement the Boolean function in the sum of products: 

 

For this circuit the output may go to 0 when it should remain at 1. The K-map for 
the above circuit is shown below: 
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From the zero location the circuit can be implemented in product of sum form: 

 

In this form the output may momentarily go to 1 when it should remain 0. The 
first case is a static 1-hazard and the second case is a static 0-hazard. A third type 
of hazard known as a dynamic hazard causes the output to change three or more 
times when it should change from a 1 to 0 or from a 0 to 1. The figure below 
shows the three types of hazards: 

 

The occurrence of a hazard can be detected by inspecting the K-maps of the 
particular circuit. For example consider the K-map of the above AND-OR circuit: 

 

The change in B from 1 to 0 moves the circuit from minterm 111 to minterm 101. 
The hazard exists because the change of input results in a different product term 
implicant covering the two minterms. Minterm 111 is covered by the product 
term implemented in gate 1, and minterm 101 is covered by the product term 
implemented in gate 2. Whenever the circuit moves from one product term to 
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another, there is a possibility of a momentary interval when neither term is equal 
to 1, giving rise to an undesirable 0 output. 

Hazards can be eliminated by enclosing the two minterms in a function with 
another product term that covers both groupings. This is shown in the K-map 
below: 

 

The hazard-free circuit is shown below. The extra gate in the circuit generates the 
product term A●C. The removal of the hazard requires the addition of redundant 
gates to the circuit. 

 

Notes 
1. In two-level networks when a circuit is synthesized in sum of 

products with AND-OR gates or with NAND gates, the removal of 
static 1-hazard guarantees that no static 0-hazards or dynamic 
hazards will occur. 
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2. Methods for eliminating hazards always depend on the 
assumption that the unexpected changes in the output are in 
response to single-bit changes in the inputs. 

Hazards in Multilevel Networks 
Begin by mapping the multilevel function into a two-level form called the 
transient output function. In forming this function the variable and its 
complement are treated as independent variables. This means that one cannot 
use the Boolean laws A A=0• and A+A=1, since the former introduces static 0-
hazards, and the latter leads to static 1-hazards. In addition we cannot use any of 
the simplification theorems derived from these Boolean laws. Since the 
distributive laws can never introduce a hazard, it can be used freely to simplify a 
function. 

A static hazard-free network is assured if the function is put in such a form that 
the transient output function guarantees that every set of adjacent 1’s in the K-
map are covered by a term, and that no terms contain both a variable and its 
complement. The first condition eliminates 1-hazards and the second eliminates 
0-hazards. 

Dynamic hazards occur because of the multiple paths in the multilevel network, 
each with different time delays. Since it is difficult to eliminate dynamic hazards in 
multilevel networks it is best to implement the network as a hazard-free two-level 
network. 

Example 
Consider the multilevel function: 

 

Design and implement a static hazard free network. 

Now: 
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This is the transient output function in sum of products form. Note 
that since A and its complement are treated as independent variables 
all the terms must be kept. Note the function is in two-level form. To 
check for static 1-hazards we draw the k-maps as shown below: 

 

Note that the term A A• can never cause a 1-hazard. With the 
groupings as shown the function contains static 1-hazards, such as 
the transition from ABCD = 1111 to 0111, or 1111 to 1101. 

To eliminate these hazards add redundant prime implicants AB and 
BD as shown. The function then becomes: 
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Note that since AB completely covers the term ABC it does not 
appear in f1. 

To verify that f1 is free of static 0-hazards, we proceed as follows: 
From the circled 0’s in the K-map we see that: 
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The function has a 0-hazard on the transition from 1010 to 0010. The 
problem can be corrected by multiplying f2 by the implicant (
B C D+ + ) as indicated by the K-map. The resulting function is now: 

 

 

Both expressions are simultaneously free of static 0- and 1-hazards. 

To implement consider the expression for f1 and factor to obtain a multilevel 
static-hazard free expression: 
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This is a three-level circuit requiring five gates. 
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Programmable and Steering Logic 
AND and OR gates (or NOR and NAND gates) can be arranged into a generalized 
array structure whose connections can be programmed to implement a specific 
function. Such general-purpose logic building blocks are called PAL’s 
(programmable array logic) or PLA’s (programmable logic arrays). 

PAL’s and PLA’s 
Array logic components are multi-input/multi-output devices, typically organized 
into an AND subarray and an OR subarray. The AND subarray maps the inputs into 
particular product terms, depending on the programmed connections. The OR 
subarray takes those terms and OR’s them together to produce the final sum of 
products expression. 

The details of the programming process depend on the particular integrated 
circuit. One technique places fuses between all possible inputs to a gate and the 
gate itself. By place a high current through selected fuses they are blown and the 
selected paths are disconnected. 

A commonly used notation for representing the technology of array logic is shown 
below. The single wires entering the AND and OR gates represent multiple inputs. 
The X’s represent the fuse locations. 
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The Difference Between PLA’s and PAL’s 
The above figure implies that both the AND and OR subarrays can be personalized 
in any way the designer wants. Devices with this generality are called 
Programmable Logic Arrays (PLA’s). However, not all programmable logic is fully 
programmable. Some devices have a programmable AND array but the 
connections between product terms and specific OR gates are hardwired. The 
number of product term inputs to an OR gate is internally limited to 2,4,8, or 16. 
Such devices are called programmable array logic (PAL). The figure below shows a 
4 input / 4 product-term / 2 output PAL organized with a particular fixed OR array. 
The OR gates for this case are limited to the product terms each. 

The main difference between PLA’s and PAL’s is that the former can take 
advantage of shared product terms and the latter cannot. 
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For devices with an equivalent internal capability, a PLA is able to implement a 
more complex collection of functions than a PAL if many product terms are 
shared. A PLA will, however, be slower because of the relatively higher resistance 
of fuse-based connections than standard wire connections. 

Example: BCD-to-Gray-Code Converter 
Design a code converter that maps a 4-bit Binary Coded Decimal 
(BCD) number into a 4-bit Gray code number. 

Each number in a Gray code sequence differs from its predecessor by 
1 bit. The circuit has four inputs A,B,C,D which represent the BCD 
number, and four outputs W,X,Y,Z which represent the 4-bit Gray 
code word.  

The truth table is shown below: 
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The K-maps are shown below with the prime implicants circled: 



124 
 

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University 
 

 

 

The reduced equations are: 
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Since there are no shared product terms, a PAL will be used to 
implement the functions. Note that hazards are of no concern here 
since the only possible adjacency is in the K-maps for Z and this 
occurs in a don’t care situation. 

The PAL as shown below contains four 4-input OR gates. Many AND 
gates are being waster. A PLA could be used to implement the 
function but would be slower. The programmable logic approach 
implements two functions in a single integrated circuit package. 
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Design Procedure 
A design procedure consist of the following steps: 

1. Understand the problem. 
2. Formulate the problem in terms of a truth table or other suitable design 

representation. 
3. Follow implementation procedure. Synthesize minimized expressions for a 

two-level sum of products combinational network. 
4. Choose implementation technology (PLA/PAL). 

Example: BCD-to-7-Segment Display Converter 
Design a combinational circuit that maps a 4-bit BCD digit to the 
segments that control a seven-segment display. 

The display element contains seven light-emitting diodes (LEDs). 
When the appropriate LED control line is asserted, the associated 
LED segment lights. We will assume that the LED driver inputs are 
active high (most of the actual LED driver components are really 
active low). Otherwise, the LED segment is off. The seven segments 
are controlled independently; there is no limit to the number of 
segments that could be illuminated at the same time. The figure 
below shows the seven-segment display and its configuration 
displaying each of the 10 possible BCD digits: 

 

Step 2: Understand the Problem 
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What is the circuit supposed to do? What are the inputs and 
outputs? There are four input signals, representing the 4-bit BCD 
digits. There should be seven outputs, one for each of the LED 
segments that must be controlled. A block diagram is shown 
below: 

 

Step 2: Formulate in Terms of a Truth Table 

It is best to tabulate the input values with the desired outputs. For 
example, the BCD representation for the digit 0 should cause the 
LED segment 0,1,2,3,4, and 5 to illuminate. Hence, for the output 
0000 the control signals C0 to C5 would be asserted, with C6 
unasserted. For the input 0001, segments 1 & 2 are turned on, 
while segments 0 and 3-6 are left off. In the table entry for 0001, 
C1 and C2 are asserted, while the remainder are unasserted. The 
whole truth table is shown below, where the only valid entries are 
for decimal 0-9, corresponding to binary 0000-1001. 
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Step 3: Implementation Procedure 

Since we desire a two-level network we will use K-map 
techniques. Note that seven 4-variable maps are required. The K-
maps with circled prime implicants are shown below: 
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From the K-maps we can write the following equations for the LED 
segment control outputs: 
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Step 4: Implementation 

The PLA implementation is shown below. The limiting factor in a PLA 
is the number of unique product terms to implement the outputs. 
There are fifteen required product terms in the above set of 
equations. A typical PLA component can handle sixteen inputs, eight 
outputs, and forty-eight product terms. From the K-maps one can see 
that the hazards are not of concern in this problem. CAD methods 
can be used to find a multi-level solution. 
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Beyond Simple Logic Gates 
Switching Logic 
Switching networks provide an alternative to discrete gates for constructing 
digital systems. They operate by steering or directing inputs to outputs through a 
network of switching paths rather than by computing a Boolean function. 

A typical digital system has several sources of information and several 
destinations. In practice the desired source is connected to a common path or bus 
and the bus is then connected to the desired destination. This is called 
multiplexing and is shown below: 

 

A multiplexor or data selector selects the desired source and places its 
information on the bus; a demultiplexer or data distributor transfers information 
on the bus to the selected destination. 

Multiplexer/Data Selector 
A multiplexer, or MUX, is a combinational logic network with 2n data inputs, n 
control inputs, and one data output. Depending on the settings of the control 
inputs, a single data input is selected and steered to the outputs. Since a 
multiplexer selects an input for connection to the output is often referred to as a 
data selector. 
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The figure below gives a functional truth table in the left and a conventional truth 
table on the right for a multiplexer with two data inputs, I0 and I1, and one 
control input A: 

 

The functional truth table indicates that we are passing a selected output to the 
output. Using a Boolean equation, the two-input multiplexer can be described as: 

 

If A=0, the output is given by I0. If A=1, the output is given by I1. 

Multiplexors are described by the number of data inputs, since the number of 
control inputs can be inferred from this. Hence, a 2:1 multiplexor has two data 
inputs, one data output, and one control input. A 4:1 multiplexor has four data 
inputs, one data output, and two control inputs. The figure below shows the block 
diagrams for 2:1, 4:1, and 8:1 multiplexer: 
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The Boolean equation for the 4:1 and 8:1 multiplexers can be generalized from 
the 2:1 multiplexer: 

 

Or in general: 
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Example: 
Design a 4:1 multiplexer. Show its block diagram, functional truth 
table, and logic diagrams. Show how the multiplexer works by 
considering the case where S1=1, S0=0. Assume the device is enabled, 
i.e.: E=1. 

The block diagram, functional truth table, and logic diagram are 
shown below: 
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Each of the four inputs I0 through I3 are selected by S0 and S1, and 
directed to the output when the device is enabled. The equation 
describing the above device is: 

 

To see how the above device works consider the case where E=1, 
S0=0, S1=1. Tracing the input signals I0 through I3, we get Q=I2 so only 
the input whose address equals 2 is seen at the output. 

Multiplexer as a Logic Building Block 
A multiplexer can implement a general-purpose logic building block. A truth table 
can be implemented directly into hardware by using a multiplexor. Consider the 
function: 
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The function can be implemented by an 8:1 multiplexer as shown below. The 
input variables A,B, and C are connected to the multiplexer selection inputs. The 
input Ii is set to 1 if the function includes minterm mi. All other inputs are set to 0. 
In this case I0, I2, I6, and I7 are all set to 1, while I1, I3, I4, I5 are set to 0. 

 

To illustrate, consider the case where A=B=C=0. This corresponds to minterm m0. 
With these inputs the multiplexor will select I0 and set f=1. If A=B=0 and C=1, then 
I1 is selected and f is set to 0, and so on. 

In general, we see that by selecting n-1 variables as control inputs to a 2n-1 input 
multiplexor, we can implement any Boolean function of a variable. 

Example 

Use a multiplexer to implement the function f(A,B,C,D) whose k-map 
is given below. 
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Since f is a function of four variables it can be implemented by an 
eight-input multiplexer. Select A,B, and C as the control inputs. The k-
map is then partitioned into eight pars of k-map entries, each sharing 
common values for the three control inputs. Each pair can be 
replaced by either 0,1,D, or NOT D. f can be represented by the 
equation: 

 

The multiplexer is shown below: 
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Two-, 4-, 8- and 16-to-1 multiplexers are commercially available as 
MSI packages. 

Decoders/Demultiplexer/Data Distribution 
Decoders convert binary information from one coded form to another. As shown 
below, the same unit can serve as a decoder or as a demultiplexer (data 
distributor), depending on how the terminals are interpreted. 

 

When enabled by E going high, the decoder places a 1 on the OUTPUT line 
corresponding to the INPUT code; all other output lines remain LOW. When used 
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as a demultiplexer DATA from the bus is applied to the E terminal and appears on 
the DESTINATION line selected by the ADDRESS. 

A decoder/demultiplexer takes as input a single data input (an enable signal) and 
n control signals, and uses the latter to assert one of 2n output lines. For example, 
a 1:2 decoder/demultiplexer has two inputs, E(enable) and S(select), and two 
outputs, Q0 and Q1. The Boolean equations for the outputs are as follows: 

 

If E=0 both outputs are at 0. When E=1 the value of S0 determines which of the 
two outputs will be driven high. The equations for the 2:3 demultiplexer are: 

 

And for the 3:8 demultiplexer: 

 

A decoder/demultiplexer is typically named by the number of control signals and 
the number of output signals (e.g. 1:2, 2:4, 3:8). Compare with the multiplexer 
naming: the number of data inputs and the number of data outputs (e.g. 2:1, 4:1, 
8:1). 

The truth table and logic diagram for a 2:4 demultiplexer are shown below: 
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To see how the input works consider the case where E=1, S1=0, S0=1. Tracing the 
signals through we see that Q0 Q1 Q2 Q3 = 0100 so that only Q1 receives the 
data. 

Decoder/Demultiplexer as a Logic Building Block 
A decoder can also be used as a “minterm generator”. The figure below shows a 
3:8 decoder where the select lines have signals A,B,C. Each output is labeled with 
the select line combination that causes that output to be asserted. 
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As an example, suppose the control signals A,B, and C are set to 0,1 and 0, 

respectively. This corresponds to minterm and output Q2 is enabled. 

The decoder can also be used as a general-purpose combinational logic building 
block. Any function expressed in sum of products form over n variables can be 
implemented by an n:2n decoder in conjunction with OR gates. 

To illustrate consider the following three functions of the Boolean variables 
A,B,C,D: 

 

It is more convenient to express as the sum of 4-input minterms: 
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The figure below uses a 4:16 decoder to implement these functions: 

 

 f1 is asserted whenever any of its three minterms are asserted. By connection 
A,B,C, and D to the decoder select lines, the output Q5, Q3, or Q15 will be 
asserted if the inputs corresponds to the desired minterm. f1 is then 
implemented by an OR gate connected to these decoder outputs. 

In a similar manner, f2 is implemented by a three-input OR gate connected to 
decoder outputs Q12, Q14, and Q15. f3is obtained by an inverter driven by the 
Q15 decoder output. 

This approach to implementing logic is useful for functions of a relatively small 
number of variables, as decoders with more than four select inputs are not as 
readily available, and a small number of minterms per function. 
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Tri-State Gates 
Besides 0 and 1, there is a third signal value in digital circuits: the high-impedance 
state, denoted by Z. When a gates output is in a high-impedance state it is as 
though the gate were disconnected from the output. Gates that can be placed in 
such a state are called tri-state gates with outputs 0,1, and Z. In addition to its 
normal inputs, a tri-state has another input called output enable. When this input 
is 0, the output is Z. When the output enable is 1, the gates output is determined 
by its data inputs. 

The truth table of a tri-state buffer gate is shown below. When output enable 
(OE) equals 0, the output is Z, no matter what the input A is. When OE=1 the 
buffer passes its input to the output. 

 

The symbol for the buffer gate is shown below: 

 

Tri-state buffer gates are useful for situations such as a bidirectional data bus, 
where two drivers are both connected to the same wire. One side must always 
have their driver in the high-impedance state so the other side can drive the wire. 

To see how tri-state gates work, consider the circuit below which consists of two 
tri-state buffers (with active-high enables) and an inverter: 
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If the Select Input is 0 then I0 steers to f (the output of the I1 buffer is open), and if 
it is 1 then I1 steers to f (the output of the I0 buffer is open). 
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Sequential Logic Design 
The basic logic gates are connected to form combinational circuits that make 
decisions in response to the present inputs. In addition to these decision 
components we need memory components to store instructions and results. The 
outputs of these sequential circuits are affected by past inputs as well as present 
inputs. A memory unit must have the following characteristics: 

1. A binary storage device must have two (2) distinct states. 
2. It must remain in one state until instructed to change. 
3. It must change rapidly from one state to another, and the state value (0 or 

1) must be clearly evident. 

A simple memory component can be implemented from cascaded inverters. This 
is the basic circuit structure using in static RAM (Random Access Memory) 
designs. Alternatively, simple memory structures can be build using cross-coupled 
NOR or NAND gates. These elements for the basic building blocks of the latch and 
the flip-flop (bistable multivibrator) memory elements which are used in many 
types of data processing systems. 

Logic Gate Memory Units 

Inverter Chains 
Consider the circuit shown below: 

 

 A 1 at the input to the first inverter becomes a 0 at the input to the second which 
reinforces the value at the first inverters input. Similar a 0 at the input is also 
reinforced. The circuit is a storage element. Some extra logic is required to open 
the feedback path what the input is changed: 
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Cascaded inverts can also be used to build circuits whose outputs oscillate 
between low and high voltages. Such circuits are called ring oscillators. The figure 
below shows an inverter chain and the associated timing waveform. The 
waveform begins with A (=X). The odd number of inverters (five) results in a 
period tp = 10 time units. Duty cycle is defined as the percentage of time a signal 
is high during its period. In this case the signal has a 50% duty cycle. 

In the ring oscillator, the duration of the period depends on the number of 
inverters in the chain. That that in the example here each inverter has a unit 
delay. 

 

Cross-Coupled NOR Gates 
In the NOR gate latch shown below the output of each NOR gate is fed back into 
the input of the other gate: 
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 The operation is summarized in the table below where, to start, we assume the 
present state of the output Q+ is 0 and the inputs to the set terminal S and the 
reset terminal R are both 0. 

 

To SET the latch, a 1 is applied to S only. For and 

the present state of the output is inconsistent with the input, the 
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systems is unstable, and Q must flip. After Q changes, the present sate changes to 

1, and becomes 0, hence =1, a stable state. Note that if either input to a NOR 
gate is 1, the output is 0. Removing the input from S causes no chance. Hence this 
is a stable state after being SET. Applying another input to S causes no change. 

To RESET the latch, a 1 is applied to R only. This results in an unstable system and 
 must flop to 0. A change in Q to 0 results in a stable output  = 0. Removing 

the input to R or applying another input to R produces no change. Hence  = 0 
and =1 is the stable state after being RESET. 

Only very short pulses are needed for triggering. Attempting SET and RESET 
simultaneously would create an ambiguous state with both and  = 0. This is 
unacceptable in a bistable unit and circuits are designed to avoid this condition. 

Another way to represent the behavior of a cross-coupled NOR gates is called the 
state diagram as shown below. 

 

The circuits state depends on the value of Q and NOT Q ( ), so there are four 
possible states. Since there are two inputs, S and R, there are four transitions for 
each state. 
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The states 01 and 10 are the normal ones for the circuit. When S=1, we enter 
state 10 (Q=1, NOT Q = 0). When R=1, the state changes to 01 (Q=0, NOT Q = 1). 
When S = R = 0 the current state is held. 

When S=R=1 the circuit enters the forbidden state 00. It stays as long as those 
inputs are held. As soon as one input returns to 0, the circuit returns to state 01 
or 10. If the current state is 00 and S=R=0, the circuit enters the forbidden state 
11. It does not stay very long before returning to state 00 if S and R remain 0. If 
the delays are match the circuit can oscillate between these states forever. This is 
known as a race condition. The circuit should never be put in state 00. 

From the circuit for the RS latch or the table we can deduce the detailed truth 
table for the latch as shown below: 

 

Where Q+ is the next state output based on the current state Q and inputs S & R. 

The K-map for the truth table is given below: 
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From the K-map we get the characteristic equation: 

 

This equation summarizes the behavior of the RS latch. For example, if S=1 and 
R=0, the next state Q+ becomes 1 independent of the current state. When S=0 
and R=1, the next state is forced to 0, independent of the current state. 

Timing Waveforms 
In the RS latch a 1 input at S will SET the output Q to 1. To RESET the latch, a 1 is 
applied to input R. The duration of the input (it must exceed a certain minimum 
time) and the time at which the input signal is applied are not significant. Such a 
latch responds to the asynchronous inputs. 

A more sophisticated latch using two AND gates is shown below. 
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Here an input is effective only when enabled by a 1 input at terminal E. In digital 
systems composed of many elements, it is usually necessary for the outputs of all 
elements to be synchronized. The synchronizing signal may come from a clock. 
The enabling terminal is frequently designed CLOCK (CK). In a clocked system, 
transactions cannot happen at random by occur in an order one-step-at-a-time 
fashion. In addition to the synchronous inputs R and S, there may be 
asynchronous inputs to clear or preset the flip-flops. 

Flip-flips different from latches in that their outputs change only with respect to 
the clock, whereas latches change outputs when their inputs change. 

The operation of a clocked RS latch (or flip flop) is shown below. Initially, output 
Q=0. If a 1 appears at SET, when ENABLE goes to 1 the flip-flop is set with Q=1. At 
the next clock pulse, the presence of a 1 at RESET forces the output to 0. At any 
time, a 1 at PRESET forces the output to 1; a 1 input at the CLEAR terminal 
overrides other inputs and forces Q to 0. 

 

The Data Latch 
The symbol for a simple RS flip-flop (without PRESET or CLEAR) is shown below. 
The ambiguous state which results when R=1 and S=1 simultaneously can be 
avoided by modifying the circuit as shown in (B) below. 
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By connecting an inverter between the R and S terminal and using only one input 
signal, the ambiguity is avoided and the number of terminals are decreased. 
When ENABLE is HIGH, the output Q follows the input D, when ENABLE goes LOW, 
no change in Q is possible, and the output is latched at the previous data value. 

This data latch is widely used as an element in digital systems. 

Example 
The enable and data inputs to a data latch are shown below. The 
product the waveform of the output. 

 

The output Q follows input D whenever enabled (E=1). When E goes 
to 0, the output remains latched in the previous condition. 

In the figure, When E goes HIGH, D=1 so Q follows D and becomes 1. 
As long as E is HIGH, Q follows any change in D. When E goes LOW, 
Q=D=1 and remains so. The Q waveform is as shown. 
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The D Flip-Flops 
Sometimes it is desirable to delay the transfer of data from input to output. For 
example, we may wish to maintain the present state Q, while a new state is being 
read that will be transferred later. The D (delay) flip-flop is shown below: 

 
It is a data latch with a second RS flip-flop. The data latch is enabled when the 
clock signal goes LOW, but the following RS flip-flop is enabled when the clock 
signal goes HIGH. We see that Q1 follows D whenever CK is LOW, but any change 
in the output Q=Q2 is delayed until the next upward transition of CK. This is an 
edge-triggered flip-flop; Q1 follows D while CK is LOW, then on the leading edge 
of the clock pulse, the value of D is transferred to output Q. On the logic symbol, 
the small triangle indicates an edge-triggered device. 
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Because the output change only at the instant the clock goes HIGH, the output 
can be synchronized without the outputs of other elements. In addition, a sudden 
spurious change in D, like the one shown above, will not affect the output. 

The truth table for the D flip-flip is shown below: 

 

The k-maps as obtained from the above table is given below: 

 

From the K-maps we get the characteristic equation: 

 

Timing 
Timing is more complicated in sequential circuits than in combination circuits 
where glitches are the only concern. Sequential logic, on the other hand, must 
examine both the current input & current state to determine the outputs and the 
next state. In addition, outputs can change in response to clocking changes as well 
as input changes. 

For proper operation the data must be stable for a few nanoseconds before the 
device is clocked (called the setup time or tsu) and must remain stable for a few 
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nanoseconds after the clocking is initiated (the hold time, th). The figure below 
shows the timing constraints for a typical edge-triggered flip-flop. In the diagram 
tw is the clock signal minimum duration, thl is the propagation delay from high to 
low, and tlh the propagation delay from low to high. Typical numbers are: tw = 25 
nS, tsu = 20 nS, th = 5 nS, thl = 25 nS, tlh = 13 nS. 

 

The JK-Flip Flop 
A very popular memory unit is the JK flip-flop shown below. In its most common 
form, the output changes state on downward transitions of the clock pulses. The 
small circle on the symbol identifies this as a falling-edge-triggered flip-flop. The 
operation is improved by using a master flip-flop that is enabled on the upward 
transition of the clock pulse while the slave flip-flop is inactive. The slave is 
enabled on the downward transition and follows its master, i.e. it takes on the 
state of the master. 
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Because of the feedback connections from the output to the input, the output of 
the JK flip-flop depends on the state of the inputs and outputs at the instant the 
clock goes LOW. In addition the ambiguity (R=S=1) is avoided. A truth table 
showing S1, R1, Q+ (the next output state) for all values of J, K, and Q (the present 
output state) is shown below: 

 

From the truth table we see the following modes of response are possible: 

1. With inputs J=K=0 the clock as no effect, and the flip-flop remains in its 
present state Q. 

2. When J and K unequal, the unit behaves like an RS flip-flop where J=S and 
K=R. That is J=1 K=0 SETs the output on falling clock edge, and J=0 K=1 
RESETS the output on falling clock edge. 
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3. With inputs J=K=1 the flip-flop toggles; that is the output changes each time 
the clock goes low. 

The K-map for the truth table is given below: 

 

From the K-map we get the characteristic equation: 

 

This equation summarizes the behavior of the JK flip-flop. 

Example: 
Two JK flip-flops that respond to downward transitions are 
connected in tandem as shown. For a 2 KHz square wave input, 
determine the output: 

 

Since we have 1 inputs at both J and K, the output will change each 
time the clock goes LOW. For a 2 KHz square wave input the output 
of the first flip-flop will be a 1 KHz square wave. Since this is the input 
to the second flip-flop, its output will be 500 Hz. 
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The JK flip-flop is used in a number of digital computer applications such as 
counters, arithmetic units, and registers. For greater flexibility, some versions 
include PRESET and CLEAR capabilities as shown below. In the unit shown PR and 
CLR are normally held HIGH. 

 

The small circles (inversion, or “active low”) indicate that if PR goes LOW, Q is 
forced to 1; where is CLR goes LOW, Q is forced to 0. 

Example 
Connect a JK flip-flop to function as a data latch. That is, when it is 
ENABLED, the DATA is to be transferred to Q when clock goes LOW. 

Logically this means that: when ENABLED, Q should follow J=D, which 
requires K is not equal to J. When DISABLED, Q should remain 
“latched” in its present state, which requires K=J=0. Thus: 
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Which results in the following logic synthesis: 

 

The T Flip-Flop 
With the J & K inputs tied together (resulting in one terminal), the JK unit 
becomes the T or toggle flip-flop as shown below: 

 

For T=0 (J=K=0) the clock pulse has no effect on output Q. For T=1 (J=K=1), the 
flip-flop toggles each time CK goes to LOW. The waveforms shows that for T held 
HIGH, the output is a square wave of half the frequency of the clock; the device is 
a frequency divider. 

The truth table for a T flip-flop is shown below: 
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The K-map is obtained from the above table and shown below: 

 

Finally from the K-Map we can get the characteristic equation: 

 

Conversion of One Flip-Flop Type to Another 
Any flip-flop can be implemented as combinational logic for the next state 
function in conjunction with a flip-flop of another type. 

A general procedure to map amount the different kinds of flip-flops is based on 
the concept of an excitation table. This table lists all possible state transitions and 
the values of the flip-flop inputs that cause a given transition to take place. 

The figure below gives excitation tables for RS, D, JK, and T flip-flops. 
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If the current state is 0 and the next state is to be 0, then the first row of the table 
describes the flip-flop inputs to cause that state transition to take place. For the 
RS latch it doesn’t matter the value on R provided that S=0. If using a D flip-flop 
the input is set to the next discrete state, which is 0 in this case. 

If a JK flip-flop us being using, the transition from 0 to 0 occurs when J=0. The 
value of K does not matter. If using a T flip-flop, the transition does not change 
the current state, so the input should be 0. The same kind of analysis can be 
applied to complete the excitation table for the three other cases. 

The procedure is to use the excitation table for the flip-flops in question to form a 
K-map. The K-map layout is for the desired flip-flop and the values entered are for 
the flip-flops being used. The method is elaborated in the following examples. 

Example: JK with D 
Show how to implement a JK flip-flop starting with a D flip flop. 

The excitation table for the JK and D flip-flops are shown below. The 
K-map is formed for the JK flip-flops with the values for the D flip-
flops entered in the map. 
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From the map we see that: 

 

Note that since the transition from 100 to 101 does not change the 
state of the flip-flops the hazard is of no concern. The 
implementation is shown below: 

 

Example: D with JK 
Show how to implement a D flip-flip starting with a JK flip-flop. 
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The excitation table is as in the last example. The K-maps are formed 
for the D flip-flops with values for J and K entries in the maps: 

 

From the maps we see that: 

 

Thus the implementation becomes: 

 

Example: RS from JK 
Implement an RS flip-flop starting with a JK flip-flop. 

The excitation table for the RS and JK flip-flops is shown below: 
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The K-maps for the RS are formed from with JK values entered in the 
maps: 

 

From the K-maps we see that: 

 

Thus: 

 

Example: JK from RS 
Implement a JK flip-flop starting with a RS flip-flop. 

The excitation table for the RS and JK flip-flops is shown below: 
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The K-maps for the JK are formed from with RS values entered in the 
maps: 

 

We see that: 

 

Thus: 

 

Sets of flip-flops can be used to represent binary numbers in which each digit 
corresponds to a value of Q (0 or 1) of a flip-flop. A register is a set of flip-flops in 



168 
 

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University 
 

which binary data can be stored. Flip-flops can be connected to serve as a counter 
in which the number stored is the number of events being counted. 

Practical Matters 
Logic gates and memory elements are available in IC form which are small in size, 
have low power consumption, and have low cost. Typically they are used in DIP 
(Dual In-line Package), with 14 or 16 pins. A photo of a 14-pin DIP is shown below: 

 

Diagrams for TTL dual D and JK flip-flops are shown below, where the pin 
numbers correspond to pins on the above package. 
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Debouncing Switches 
When a switch is flipped from one terminal to another, it does not make a clean, 
solid contact with the new terminal. Instead, it bounces several times before 
coming to rest. Because of this and the fact that TTL chips treat floating inputs as 
1’s, there are several transitions from 1 to 0. This cause errors in reading the 
switches output. The following diagram shows an example of switch bounce: 

 

If the switch was for example counting votes, that single push would be read as 
several quick pushes. 

The problem is solved by using an RS latch. The figure below shows an RS latch, a 
single pole double throw (SPDT) switch, and two resistors connected to ground: 
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When the switch is in the reset position, R is high and Q is low. If the switch is 
moved so that it is in transition towards S, the grounded resistors pulls the latch 
low. The latch is in its holding state since both inputs are 0. 

When the switch first touches S the latch goes high and Q=1. If the switch 
bounces, temporarily breaking the connection, the latch input returns to 0, 
leaving the latch in a holding state. If the switch bounces back, remaking the S 
connection, the latch is set again and so no state change occurs. 

As long as the switch does not bounce enough to remake R, the Q output will 
remain high as long as the switch is bouncing into its final position. 

A similar analysis applies for a switch moving from S to R. 

The 555 Timer 
The 555 timer is a programmable timer chip. The circuit diagram is shown below: 
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The period an duty cycle are determined by placing the appropriate resistors and 
capacitors between the pins. The following formula are used to calculate the 
clocks characteristics: 

 Clock high time = 0.7 (Ra + Rb) C1 

 Clock low time = 0.7 (Rb) C1 

 Clock Period = high time + low time = 0.7 (Ra + 2Rb) C1 

 Clock Frequency = 1 / (Clock Period) 

 Duty Cycle = (Ra + Rb) / (Ra + 2Rb) 

Note that the 555 timer draws large currents for short periods of time when the 
output changes state. To minimize the resulting spikes that can upset the rest of 
the circuit it is important to put a 0.1 uF bypass capacitor from the 5V pin, pin 4, 
to ground. 

Example: 
Design a clock signal with a period of 500 uS and a 75% duty cycle. 

Clock frequency = 1/period = 1/500E-6 = 2000 Hz = 2 KHz 
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Sequential Logic Applications 
In this section we will examine three useful sequential logic components: 
registers, counters, and memories. 

Registers 
In addition to logic circuits that process data, digital systems must include 
memory devices to store data and results. A flip-flop can store or “remember” 
one digit of a binary number, one bit. A register is an array of flip-flops that can 
temporarily store data or information in digital form. A great variety of registers 
are available in IC form. 

Shift Registers 
The serial shift register below consists of four trailing-edge-triggered JK flip-flops 
connected so that J ≠ K. At the trailing edge of each clock pulse Q follows J in each 
flip-flop of the 4-bit register. The data are entered serially, that is, one bit at a 
time, and shifted right through the register at each clock pulse. 
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The table below shows how 0100 would be placed in the register: 

 

Begin with the least significant bit. With a 0 at IN=JA and K ≠ J, at the trailing edge 
of the first clock pulse (CP1), QA follows JA and the LSB is transferred to the output 
of flip-flop A. During the next clock cycle, B=QA=0 and the second bit, a 1, is 
applied at IN = JA. At CP2, the 0 is transferred to QB (i.e., shifted one position to 
the right) and the 1 is transferred to QA. After four clock pulses, the 4-bit number 
is stored in the register and 0110 is available at parallel outputs ABCD. An 
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application of this register is an serial-to-parallel converter. A single input line and 
four output lines are required.  

The shift register shown below consists of D flip-flops with CLEAR and PRESET. The 
symbols indicate that the flip-flops are cleared to 0 if CLR goes LOW while PR is 
inactive (HIGH) (clearing is independent of the clock level). On the positive-going 
edge of the clock signal, the input at D is transferred to Q. 

 

Since both inputs and outputs are accessible this unit can function as: 

i. A 4-bit storage register (serial or parallel) 
ii. As a serial-to-parallel converter 

iii. As a parallel-to-serial converter 

For function (iii), all stages are cleared to 0, and the input data are applied to the 
A,B,C,D INPUTS. A HIGH signal to PRESET ENABLE is NANDed with any 1 input to 
send PR LOW setting Q to 1 in that stage (independent of the clock level). At the 
next upward transition of the clock pulse (unless the clock is inhibited), the data 
are shifted to the right; the value of QD is output and the valued of QC is 
transferred to QD, etc. 
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A Practical Register 
The 74173 TTL is a 4-bit register incorporating D flip-flops. The pin diagram is 
shown below: 

 

For M+N=0, normal logic states are available; for M+N=1, the outputs are 
disconnected. When both G1 and G2 are LOW, data at the D inputs are loaded on 
the next positive transition of the CLOCK. 
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Counters 
Flip-flops can be connected as counters to count random events, or to divide a 
frequency or to measure a parameter (e.g.: time, distance, speed). 

Counters are used to keep track of operations in digital computers and in 
instrumentation. JK, T and D flip-flops are used in counter design. 

Types of Counters 

Divide-by-n Circuits 
A divide-by-n counter produces one output pulse for n input pulses: n is called the 
“modulo” of the counter. As we see earlier a J-K flip-flop divides by two or four for 
J&K help HIGH, the output Q is the number of CK inputs divided by two. 

Two D flip-flops can be used to obtain a divide-by-four circuit as shown below: 
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With QA and QB cleared (0), when clock sign f goes LOW, CK goes HIGH and DA = 

AQ = 1 is transferred to QA. The next time f goes LOW, QA changes to low; time 
cycles at f complete one cycle of QA, or QA=f/2. When QA  goes low, A BQ CK=  goes 

HIGH and BBD =Q =1is transferred to BQ ; from cycles at f complete one cycle of BQ  
or BQ  = f/4. 

Binary Ripple Counter 
The counter shown below shows a 3-bit ripple counter using JK flip-flops in 
cascade. With J and K held HIGH (the +5V connections are not shown), the flip-
flops toggle at each downward transition of the pulse at CK. The bit QA changes 
state after each input pulse goes low. The next bit QB changes state whenever QA 
goes LOW since QA supplies CKB. Similarly, QC changes state whenever QB goes 
LOW. 
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The table below shows the outputs QA, QB and QC for the first 8 clock pulses. 
Note that this counter is counting from 000 to 111. After the count reaches 111, 
counting begins again from 000. Thus, a 3-bit counter cycles through 8 states 000 
through 111. Similarly, a 4-bit counter will cycle through 16 states, 0000 through 
1111. In general, an n-bit ripple counter will cycle through 2n states, 0 through 2n-
1. 
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Counters that cycle through 2n states, from 0 to 2n-1, are known as up-counters. In 
some cases it is desirable to counter down, and the circuits are known as down-
counters. An n-bit ripple counter that cycles through the 2n states is known as a 
divide-by-2n counter or as a modulo-2n binary counter. 

The present unit is an asynchronous binary, modulo-8, ripple counter; 
asynchronous because all flip-flops do not change at the same time; binary 
because it follows the binary number sequence with bit values 20, 21, and 22; 
modulo-8 because it counts through 8 distinct states; ripple because the changes 
in state ripple through the stages. 

Example 
Design a modulo-5 binary counter using T flip-flops with CLEAR 
capability. 

Three stages are required to counter beyond 4. A modulo-5 counter 
must counter up to 4 and then, on the fifth pulse, clear all flip-flops 
to 0. The truth table is shown below: 
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At the count of 5, the 1’s at QA and QC can be NANDed. To generate a 
CLEAR signal as shown below: 

 

Decade Counters 
Communication with humans is more convenient in the decimal system. Flip-flops 
count in binary so binary numbers must be coded in decimal. To counter to 10 in 
the 8-4-2-1 code, four flip-flops are required. Ten distinct states can be obtained 
by modifying a 4-bit binary counter so that it skips the last six states. At counts in 
a normal manner from 0 to 9, then feedback logic resets the next count to zero. 

Example 
Design an 8-4-2-1 BCD ripple counter as follows: 

A. Draw a block diagram of a 4-stage binary ripple counter using T 
flip-flops ABCD (T held HIGH). 

B. Show the truth table of flip-flops for a decade counter that 
counts normally to decimal 9 and then resets to 0000. How 
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does it differ from the truth table for a binary counter in the 
tenth row? 

C. Modifying the circuit to accomplish the following: On the 
eighth count, the change in state of the D (MSB) flip-flop is to 
disable the input to the B flip-flop so it will not change or 
counter to 10. (see part (D)). 

D. Modify the circuit so that on the tenth counter flip-flop D will 
be reset to 0 by the output of A flip-flop, without affecting the 
use of QC to toggle D. 

E. Check the operation of the decade counter by drawing CK and 
flip-flop waveforms. 

The results are as follows: 

1. The block diagram is shown below: 

 

2. The truth table is shown below. Note that in the tenth row the 
counter is set to 0000, whereas the binary counter would have 
1010 in that row. 
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3.  

4.   

 

5. The waveforms are shown below: 
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Synchronous Counters 
One disadvantage of ripple counters is the slow speed of operation caused by the 
long time required for changes in state to ripple through the flip-flops. In addition 
these time delays can cause temporary state combinations (and voltage spikes 
called glitches) that result in false synchronous counters in which all flip-flops 
change state at the same instant. 

In the synchronous counter shown below, T flip-flop A toggles, and the other flip-
flops are clocked. Flip-flop B toggles on the next counter after QA becomes 1, as 
shown in the truth table. The AND gate causes flip-flop C to toggle on the next 
counter after QA and QB = 1 as called for in the truth table. 
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In general, synchronous counters are fast and trouble free. 

Ring Counters 
The figure below shows a 4-bit ring counter using D flip-flops. As in a synchronous 
counter, all flip-flops are triggered simultaneously; however, the output of each 
flip-flop drives only the adjacent flip-flops. In a ring counter a single pulse 
propagates through the ring, while all remaining flip-flops are at the zero-state. 
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The truth table is shown below: 

 

A modulo-N ring counter requires N flip-flops and no other gates. 

Counter Design Procedure 
Counters are the simplest possible finite-state machines. The typically have only a 
single input instructing them to counter (after just the clock), and their outputs 
are just the current state. 

A generalizing design process consists of the following four steps: 

1. From the written specifications of the counter draw a state transition 
diagram that shows the counters desired sequence. 
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2. Design the state transition table from the state diagram, tabulating the 
current stat with the next state in the count sequence. Each state-bit is 
implemented by its own flip-flop. 
 

3. Express each next-state bit as a combinational logic function of the current 
state bits. 
 

4. Choose a flip-flop for implementation of “remap” the next-state mapping 
(K-maps) determined in step 3 to obtain the desired behavior from the 
selected flip-flop. 
 

Example: Generalized Counter Design 
Design a 3-bit counter that advances through the sequence 
000,010,011,101,110,000 and repeats. Not all the possible 
combinations of the 3 bits represent a valid state. The unused states 
001,100, and 111, can be used as don’t care conditions to simplify 
the logic. 

A. The state transition diagram is shown below: 
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B. The state transition table is shown below. Note, the storage 
elements are named CBA. 

 

C. To express each next-state bit as a combinational logic 
function of the three current-state bits we draw the K-maps as 
shown below. 
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D. Since this is almost a straight binary sequence we will use a T 
flip-flops. The T flip-flops excitation table shown below will be 
used to derive new next state K-maps: 

 

The figure below shows the toggle inputs needed to 
implement the desired state transitions: 

 

For example, counter state 000 advances to 010, so the T 
inputs should be 0 (don’t toggle) for C, 1 (toggle) for B, and 0 
(don’t toggle) for A. Similarly, state 110 returns to 000. In this 



189 
 

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University 
 

case, the control for C, B, A is toggle, toggle, don’t toggle 
respectively, or 110. 

The remapped K-maps for toggle implementation are given 
below: 

 

 

 

Using the K-maps we obtain the minimalized functions: 
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The implementation is shown in the figure below. To reduce 
wiring complexity, the input and output networks are labeled 
rather than drawn as wires. Two networks with the same label 
are understood to be connected. 

The timing waveform is also shown below. The proper 
sequencing through the states 000, 010, 011, 101, 110, 000 is 
clear from the waveform. 
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Self-Starting Counters 
The counter should never be assumed to start in a particular state unless it is 
designed to do so. At power up the states are undefined; they could be 0 or 1 at 
random. 

This leads to a problem for counters that do not use all state combinations of the 
storage elements. What happens if a counter enters one of the unused states at 
start-up depends on how don’t cares have been mapped into 0’s and 1’s by the 
implementation procedure. The counter could sequence through the non-counter 
states and never enter the sequence it was designed for. 

Verifying if a Counter is Self-Starting 
A self-starting counter is one in which every possible state, even those not in the 
desired counter sequence, has a sequence of transitions that eventually leads to a 
valid counter state. Therefore, no matter how the counter starts up, it will 
eventually enter the proper counter sequence. 

In general, it is desirable to enter the counter sequence is as few transitions as 
possible. However, it may be an advantage to depart from this rule if the 
sequence of noncounter states leads to reduced hardware. 

A procedure to check if the counter is self-starting is illustrated in the following 
example. 
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Example 
Analyze the solution of the last example to check whether or not it is 
self-starting. 

First, replace the don’t cares in the K-maps for the toggle 
implementation of the last example with the actually assigned 1’s 
and 0’s (they are underlined in the figure below): 

Since the K-maps represent the inputs to the toggle flip-flops they 
will be used to determine the flip-flops next state as shown in the 
diagram below. The next state is determined from the present state 
and the toggle inputs as required by the toggle excitation table. 
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The complete state transition diagram as obtained from the table is 
shown below. Note the counter is self-starting. It may however 
require two transitions before it is in the correct sequence. 

 

Counter Reset 
In the last example the particular starting state did not matter. It is more usual to 
have a fixed starting state for the counter or finite-state machine. 
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Flip-flops typically have preset and clear inputs. By use of those inputs any state 
can be chosen as the starting state. 

Implementation with Different Kinds of Flip-Flops 
Toggle flip-flops are a natural choice for implementing binary counters, but other 
flip-flop types may need less hardware for implementation. 

We have shown how to implement the finite-state up-counter using toggle flip-
flops. We will now implement this counter using RS, JK, and D flip-flops. 

Example Implementation with RS Flip-Flops 
Implement the five-state up-counter of the earlier example using RS 
flip-flops. 

The first two steps of the counter design procedure – the state 
transition diagram, the state transition table, and the next-state K-
map have already been performed. The next step starts with the RS 
flip-flop excitation table as shown below: 

 

This table will be used to determine the RS inputs needed to 
implement the desired state transitions, as shown in the figure 
below. 
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The re-mapped K-maps for the RS implementation are given below. 

 

 

Using the K-maps we obtain the minimized functions: 
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The implementation is shown in the diagram below. The figure 
doesn’t show the reset logic. 

 

To check if the system is self-starting we replace the don’t care in the 
K maps with the actually assigned 1’s and 0’s (see table below): 
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The complete state transition diagram as obtained from the table is 
shown below. Note that the counter is self-starting. It may take three 
transitions before reaching the correct sequence. 

 

Example Implementation with JK Flip-Flops 
Implement the five-state up-counter of the earlier example using JK 
flip-flops. 
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As in the last example the first three steps of the design procedure 
have been performed. The last step starts with the JK flip-flops 
excitation table as shown below. 

 

From this table the JK inputs needed to implement the desired state 
transition will be determined (see table below). 

 

The remapped K-maps for the JK implementation are given below. 
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Using the K-maps we obtain the minimized functions: 

 

The implementation is shown in the diagram below. Again the reset 
logic is not shown. 
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To check if the system is self-starting we replace the don’t cares in 
the K-maps with the actually assigned 1’s and 0’s (see table below). 

 

The complete state transition diagram as obtained from the table is 
shown below. Note that the counter is self-starting. If may take three 
transitions before reaching the correct sequence. 
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Example Implementation with D Flip-Flops 
Implement the five-state up-counter of the earlier example using D 
flip-flops. 

Again as in the last example the first three steps of the design 
procedure have been performed. From the excitation table for the D 
flip-flops shown below it is seen that the D inputs are identical to the 
next-state outputs. 

 

These are already tabled in the state transition table. We place the 
next state outputs into K-maps and find the minimized functions. The 
K-maps are identical to those obtained earlier in the original 
example. 
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Using the K-maps we obtain the minimized functions: 

 

The implementation is shown in the diagram below. The reset logic is 
not shown. 



203 
 

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University 
 

 

To check if the system is self-starting we replace the don’t cares in 
the K-maps with the actually assigned 1’s and 0’s: 

 

The complete state transition diagram as obtained from the table is 
shown below. Note that the counter is self-starting. It may take two 
transitions before reaching the correct sequence. 
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Comparison & Summary of Different Implementations 
The same state diagram led to the different implementation costs: 

Flip-Flip Type Gates Literals Wires 
T Flip-Flops 5 10 15 
RS Flip-Flops 3 5 12 
JK Flip-Flops 2 4 10 
D Flip Flips 3 5 9 
 

In general JK flip-flops usually result in the most gate and literal efficient 
implementations. Since the RS flip-flops behavior is a subset of the JK, there is no 
advantage in using RS devices. 

T flip-flops are sorted for implementing straight-forward binary counters, but 
their advantage is lost when the counter follows a sequence is not in direct binary 
order. In the example considered the T flip-flop was the worst. 

D flip-flops, although not the most gate efficient have same advantages. First, 
they simplify the design procedure where the next-state remapping steps can be 
skipped. Second, the wiring is not as complex. Wiring complexity is especially 
important when using programmable logic technologies. Finally, D storage 
elements are transistor efficient in MOS VLSI technologies. 
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In summary, for conventional packaged MSI/SSI TTL designs, JK flip-flops are 
usually preferred, especially when the design criterion is minimum gate and literal 
count. D-type devices are preferred when designing with programmable logic or 
in more highly integrated technologies than TTL, where minimum wire count or 
simplified design procedure is the objective. 

The technique we have been discussing can be used in a reverse order to obtain 
the state transition table and diagram when the final circuit implementation is 
given. 

Example 
Find the state transition table and counter state diagram for the 
implementation given below. 

 

From the above diagram we see that: 
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We can now use the above expression along with the excitation table 
for the JK flip-flop to obtain the state transition table. 

 

 

The state transition diagram is given below: 

 

From the above diagram we see that two of the eight counts are not 
part of the counter sequence. However, since 111 -> 000 and 011 -> 
100 the counter is self-starting. 
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Memory 
In digital computers instructions and numbers are stored in the memory. The 
memory is an organized arrangement of elements called memory cells each of 
which can store (“write”) data at any selected location (“address”) and retrieve 
(“read”) the data at any later time. In Read-Only Memory (ROM), data we initially 
and permanently stored by the manufacture or the user. The computer can read 
the data at any address but cannot alter the stored data. 

RAM 
In the Read and Write Memory shown below, the k address lines can designed 2k 
= m words whose n bits are carried on the n parallel input and output lines. 

 

The memory includes an m x n matrix of memory cells. Each cell consists of a 
binary storage element and the associated control logic. In the simple cell shown 
below, the cell is selected when S goes HIGH. With R/W  HIGH, the output is 
enabled and the value of Q is read out on the output data line. With R/W  LOW, 
the input is enabled to units in the input data value. 
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An example of an elementary RAM with a capacitor of two 3-bit words is shown 
below: 

 

The address causes the decoder to activate one of the two word-select lines. In 
the WRITE operation ( R/W LOW), 3 bits of data are transformed from the input 
lines to the selected word. In the READ operation the 3 bits of the selected word 
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are transferred to the output lines with the OR gates. The outputs of the 
unselected words are all LOW. 

Because the words in memory can be accessed in any order, we have a Random-
Access Memory (RAM). In the 2x3 RAM above, address selection is linear, since 
one word-select line is activated. In large memories, selection is coincident since 
each cell is accessed by addressing an X select line to select the row and a Y select 
line to select the column. The intersection of the X and Y lines gives one cell in a 
two-dimensional matrix. 

There are two types of RAM, static and dynamic. SRAM retains its data as long as 
power is applied without any further action from the computer. Each cell of a 
static RAM is a flip-flop. DRAM requires continuous actions from the computer to 
maintain its contents. Each cell in a dynamic RAM is a capacitor, which leaks 
charge and therefor requires continuous recharging to maintain its value. SRAM is 
used in microprocessor based systems that require small memory; DRAM is used 
in large memory systems because of lower cost and greater density. 

MOS devices are widely used because of their high packing density and low power 
consumption. Bipolar RAM’s are very fast but are less compact and less energy 
efficient than MOS RAM’s. They are used as a “scratch-pad” memory for data 
being processed. 

Example 
An array of eight memory cells is arrange in two rows and four 
columns. Design he addressing system consisting of a row decoder 
and a column decoder. Assume a row or column is selected when 
driven HIGH (logic 1). 

A) Row 0 and 1 are selected by row-select (RS) values 0 and 1 and 
columns 0 to 3 are selected similarly. Compare the truth tables for 
RS and for CS1 and CS2. 

B) Show the eight memory cells (lettered A through D and E through 
H). Design the decoders using AND and NOT gates only and show 
the two decoder circuits on your diagram. 
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C) Specify the address values that will select cell F. 

D) How many row-select and column-select lines would be required 
to address 1024 cells arranged in 16 rows and 64 columns. 

Answers: 

A) The truth tables are shown below: 
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B) 

 

C) Cell F is selected when: 

RS = 1; CS1 = 0; CS2 = 1 

D) The number of rows/columns is given by: 

Number of rows/columns = 2k 

Where k = number of rows/columns select lines 

So 16 rows = 24, which means 4 row select lines are required. 

So 64 columns = 26, which means 6 column select lines are 
required. 

ROM 
In Read-Only Memory (ROM), binary data is physically and permanently stored by 
deforming the state of the memory cells. A set of input signals on the address 



212 
 

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University 
 

lines is decoded to access a given set of cells whose states then appear on the 
output lines. 

A typical 4x16 ROM is shown below: 

 

The 64 bits of the 4x16 ROM are stored in 64 memory cells arranged in 2k = 22 = 4 
words of 16 bits each available at the 16 output lines. The address is coded as a K-
bit binary number; a decoder translates the coded address and specifies one of 
the 2k words. On the 2x4 decoder shown below, the address xy = 10 yields a 1 at 
D2 ( xy ) and specifies that word 2 is to be read, that is, connected to the 16 output 
lines. 
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The function performed can be described as follows: (1) If the input is an address 
and the output is a word (data or instructions) stored, we have a “memory”. (2) If 
the input is data coded in one form and the output is the same data coded in 
another form we have a “code converter”.  (3) If the input is a set of binary 
variables (a binary function) and the output is a related binary function we have a 
“combinational logic circuit” that can replace a network of logic gates. 

There are three types of read only memory; mask-programmable (ROM), 
programmable (PROM), and erasable programmable (EPROM). The masked-
programmed ROM’s are programmed during manufacturing. A PROM device 
initially contains all 0’s; the user programs the unit by electrically changing 
appropriate 0s and 1s. This is an irreversible process. EPROMs can be 
programmed and erased repeatedly. EPROMs can be erased by shining and 
ultraviolet light into a window at the top of the device. 

The same bipolar and MOS technologies are used in IC ROM as in RAM. In general 
ROM is simpler since fewer control elements are necessary and no provision is 
made for changing cell states. 

Example 
Show how a ROM can be used to realize: 

A) The multiplexer discussed earlier, 4:1 MUX 

B) The decoder discussed earlier, 2:4 DEC 

Answers: 

A) For each combination of values at the E, I0, E1, I2, I3, S1, and S0 
inputs, the output is to be 0 or 1. If each input combination is 
considered as an “address”, a ROM can store all possible outputs. 
For these 7 inputs, a 27 = 128x1 ROM is needed. A few 
representative lines of the truth table are given below. 
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Connect E, I0, E1, I2, I3, S1, and S0  to the address inputs as shown 
below. 

 

B) For this case 32 bits of ROM (8x4) are needed. Connect E, S1 and 
S0 to the address lines, and the 4 output lines to the destination 
(Q0, Q1, Q2, Q3). The outputs will all be 0 whenever E=0. The truth 
table for the decoder as given before is reproduced here: 
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Connect E, S1 and S0 to the address lines as shown below: 
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Finite State Machines 
Finite state machine are so named because the sequential logic that implements 
them can be in only a finite number of possible states. The counters discussed 
earlier are simple finite state machines. Their outputs and states are identified, 
and there is no choice of the sequence of counting. 

In the more generalized case, the outputs and next state of the finite state 
machine are combinational logic functions of their inputs and present state. Finite 
state machines are essential for realizing the control and decision-making logic in 
digital systems.  

In designing finite state machines a rigorous synchronous design methodology will 
be followed. This means that the state changes will be toggled with a global 
reference signal, the clock. State time is defined as the time between related 
clocking events.  

Finite State Machine Design Procedure 
A general design procedure for arbitrary finite state machines is given below. 

1) Understand the problem. A finite state machine is often described by a 
written specification of its behavior. Some input sequences should be tried 
to help understand the conditions under which the various outputs are 
generated. 
Outcome: Descriptive block diagram 
 

2) Obtain an abstract representation of the FSM. Put the problem in a form 
that is easy to manipulate by known procedures (e.g.: draw a state 
diagram). 
Outcome: Initial State Diagram 
 

3) Perform state minimization. The abstract representation after has too 
many states. Some states may be eliminated to simplify the problem. 
Outcome: Simplified State Diagram & Symbolic State Transition Table 
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4) Perform state assignment. Outputs are derived from present and past 

states and a good choice of how to encode the state after leads to a simple 
implementation. 
Outcome: Encoded State & Transition Table 
 

5) Choose flip-flop types for implementing the FSM’s state. JK flip-flops tend 
to reduce gate count but have more connections. D flip-flops simplify the 
connection process. 

6) Implement the finite state machine. Using Boolean equations or K-maps for 
the next state and output combinational functions produce the minimized 
two-level or multilevel implementations. 
Outcome: Remapped state transition Table (using excitation table of flip-
flops), K-maps for flip-flop inputs & FSM output, Circuit Synthesis 
 

Example: A Simple Vending Machine 
Implement a simple finite state machine that controls a vending 
machine. 

The control works as follows: The vending machine delivers a 
package of gum after it has received 15 cents in coins. The machine 
has a single coin slot that accepts nickels and dimes, one coin at a 
time. A mechanical sensor indicates to the control whether a dime or 
a nickel has been inserted into the coin slot. The controller’s output 
causes a single package of gum to be released down a chute to the 
machine is to be designed so it does not give change. A customer 
who uses two dimes losses 5 cents. 

1) Draw a block diagram to understand the inputs and outputs. In 
the figure below N is asserted for one clock period when a nickel 
is inserted into the coin slot: 
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D is asserted when a dime has been deposited. The machine 
asserts Open for one clock period when 15 cents (or more) has 
been deposited since the last reset. It will be assumed that the 
coin sensor returns any coin not recognized, leaving N and D 
unasserted, and that extreme logic resets the machine after the 
gum is delivered. 

2) A more suitable abstract representation is obtained by 
enumerating the possible unique sequences of inputs or 
configurations of the system. For this case gum is released for the 
input sequences: 

• Three nickels in sequence: N, N, N 

• Two nickels followed by a dime: N, N, D 

• A nickeled followed by a dime: N, D 

• A dime followed by a nickel: D, N 

• Two dimes in sequence: D, D 

This can be represented as a state diagram as shown below. 
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To keep the state diagram simple only transitions that explicitly 
cause a state change are concluded. Also Open is shown only in 
states where it is asserted. 

3) This nine-state description is not the best. Since states S4, S5, S6, 
S6, and S8 have identical behavior they can be combined into a 
single state. 

A further reduction can be obtained if we think of each state as 
representing the amount of money received so far. The state 
diagram derived in this way is shown below. Note that only four 
states are required: 
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Techniques are available for minimizing the number of states. We 
now have a finite state machine with a minimum number of 
states. The symbolic state transition table is shown below. Note 
we assume that N and D are never asserted at the same time. 

4) Next the states must be encoded. A natural state assignment 
would encode the states in 2 bits: state 0₵ as 00, state 5₵ as 01, 
state 10₵ as 10 and state 15₵ as 11. The encoded state transition 
table is shown below. A number of computer-based tools are 
available for funding an effective state encoding. 
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5) Implementation based on both D and JK flip-flops will be 
considered. 

6) The K-maps for the D flip-flops implementation are shown below. 
These maps are obtained directly from the encoded state 
transition table. 
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From the K-maps we obtain the following minimized equations: 

 

The logic circuit is shown below. It uses eight gates and two flip-flops. 



224 
 

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University 
 

 

To implement using JK flip-flops the next-state functions must be 
remapped. We start with the JK excitation table as shown below: 

 

The remapped state transition table is shown below. 
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The remapped K-maps for the JK implementation are given below. 
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Using these K-maps we obtain the minimized functions: 

 

The implementation is shown below, it requires six gates and two 
flip-flops. This is a slight improvement over the D flip-flop case. 
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Moore and Mealy Machines 
The most general form of a sequential circuit has inputs, outputs, and internal 
states. It is customary to distinguish between two types of sequential circuits: the 
Moore machine and the Mealy machine. 

The Moor Machine 
In the Moore machine, the outputs are a function of the present state only. An 
example of a Moore machine is shown below.  

 

The circuit can be specified by the following input functions: 
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We see that the outputs are taken from the flip-flops and are a function of the 
present state only. The outputs change synchronously with the state transition 
and the clock edge. The finite state machine we have considered so far are Moore 
machines. 

For the given system we can use the JK excitation table to find the state table and 
state transition diagram. 

 

The state transition table is given below: 

 

The state transition diagram is shown below: 
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Note that since the directed lines are marked with a single binary digit without a 
slash, there is one input variable and no output variables. The state of the flip-
flops may be considered the outputs of the circuit. 

The Mealy Machine 
In the Mealy machine, the outputs are functions of both the present state and 
inputs. An example of a Mealy machine is shown below. The circuit has one input 
x, one output y, and two D flip-flops A and B. The logic diagram can be expressed 
algebraically with two flip-flop input functions and one output circuit function: 
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We see that the output Y is a function of both input X and the present state of A 
and B. The outputs can change immediately after a change at the inputs, 
independent of the clock. A Mealy machine constructed in this fashion has 
asynchronous outputs. 

For the given system we can use the D excitation table to find the state table and 
the state transition diagram. 
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Note that D=Q+ 

The state transition table is given below: 

 

The state transition diagram is shown below: 
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Note that the labeling on the directed lines indicate the input and output 
variables (i.e.: i/o = input/output). 

An example where we obtain the circuit diagram gives the state transition 
diagram, inputs and outputs is given below. 

Example: 
A sequential circuit has three flip-flops, A, B, C; one input, x; and one 
output, y. The state diagram is shown below. The circuit is to be 
designed by treating the unused states as don’t care conditions. 
Check the final circuit to ensure that it is self-starting. Use JK flip-
flops in the design. 

 

From the given diagram and the excitation table for JK flip-flops we 
can obtain the state table as given below. 
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From the above table we can obtain the K-maps: 
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Using the K-maps we obtain the minimized functions: 

 

The implementation is shown below: 
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Note that the shorthand notation is used in the above diagram so 
that leads with the same label are connected together. 

Since the state 101, 110, and 111 are not used the circuit must be 
checked to ensure that it is self-starting. To check we see what the 
don’t cares become in the K-maps. The results are shown by the 



236 
 

ECED2200 Digital Circuits Notes – © 2012 Dalhousie University 
 

numbers next to the X’s and the state transition table. The complete 
state transition diagram is shown below. 

 

 

We see from the last diagram that the system is self-starting. 

Alternative State Machine Representations 
State diagrams do not adequately capture the notion of an algorithm and are 
ineffective at capturing the structure behind complex sequencing. As a result 
hardware designers have shifted toward using alternative representations of FSM 
behavior that resemble software descriptions. The following alternate 
representations are being used: 

A) Algorithmic state machine (ASM) notation, which is similar to program 
flowcharts but has a more rigorous concept of timing 
 

B) Hardware Description Languages (HDLs), which look like programming 
languages, but they explicitly support parallel computations. 
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